Land surface temperature is predicted to increase by 0.2 °C per decade due to climate change, although with considerable regional variability, and heatwaves are predicted to increase markedly in the future. These changes will affect where crops can be grown in the future.
View Article and Find Full Text PDFThe critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (T). However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change.
View Article and Find Full Text PDFTropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation.
View Article and Find Full Text PDFPremise: Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly.
Methods: We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought.
Results: Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit.
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (F /F ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity.
View Article and Find Full Text PDFRussia has the largest forest area on earth. Its boreal forests officially store about 97 Pg C, which significantly affect the global carbon cycle. In recent years, forest fires have been intensifying on the planet, leading to increased carbon emissions.
View Article and Find Full Text PDFBackground: Many significant ecosystems, including important non-forest woody ecosystems such as the Cerrado (Brazilian savannah), are under threat from climate change, yet our understanding of how increasing temperatures will impact native vegetation remains limited. Temperature manipulation experiments are important tools for investigating such impacts, but are often constrained by access to power supply and limited to low-stature species, juvenile individuals, or heating of target organs, perhaps not fully revealing how entire or mature individuals and ecosystems will react to higher temperatures.
Results: We present a novel, modified open top chamber design for in situ passive heating of whole individuals up to 2.
Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient.
View Article and Find Full Text PDFWe report large-scale estimates of Amazonian gap dynamics using a novel approach with large datasets of airborne light detection and ranging (lidar), including five multi-temporal and 610 single-date lidar datasets. Specifically, we (1) compared the fixed height and relative height methods for gap delineation and established a relationship between static and dynamic gaps (newly created gaps); (2) explored potential environmental/climate drivers explaining gap occurrence using generalized linear models; and (3) cross-related our findings to mortality estimates from 181 field plots. Our findings suggest that static gaps are significantly correlated to dynamic gaps and can inform about structural changes in the forest canopy.
View Article and Find Full Text PDFThe carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots.
View Article and Find Full Text PDFLand vegetation is currently taking up large amounts of atmospheric CO, possibly due to tree growth stimulation. Extant models predict that this growth stimulation will continue to cause a net carbon uptake this century. However, there are indications that increased growth rates may shorten trees' lifespan and thus recent increases in forest carbon stocks may be transient due to lagged increases in mortality.
View Article and Find Full Text PDFThe impacts of climate change on precipitation and the growing demand for water have increased the water risks worldwide. Water scarcity is one of the main challenges of the 21st century, and the assessment of water risks is only possible from spatially distributed records of historical climate and levels of water reservoirs. One potential method to assess water supply is the reconstruction of oxygen isotopes in rainfall.
View Article and Find Full Text PDFMononeuritis Multiplex: A Diagnostic Challenge Eosinophilic granulomatosis with polyangiitis (EGPA, formerly Churg-Strauss syndrome) is a multifaceted disease. Due to the variability in vascular and organ involvement, EPGA can manifest itself very differently. We report a case of a 60-year-old patient with a known bronchial asthma, pansinusitis and newly blood eosinophilia with a rapid-onset mononeuritis multiplex.
View Article and Find Full Text PDFTropical forests are experiencing unprecedented high-temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high-temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (F /F ) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress.
View Article and Find Full Text PDFThe Atlantic rainforest of Brazil is one of the global terrestrial hotspots of biodiversity. Despite having undergone large scale deforestation, forest cover has shown signs of increases in the last decades. Here, to understand the degradation and regeneration history of Atlantic rainforest remnants near São Paulo, we combine a unique dataset of very high resolution images from Worldview-2 and Worldview-3 (0.
View Article and Find Full Text PDFHigher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity.
View Article and Find Full Text PDFMost of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2018
The outstanding tropical land climate characteristic over the past decades is rapid warming, with no significant large-scale precipitation trends. This warming is expected to continue but the effects on tropical vegetation are unknown. El Niño-related heat peaks may provide a test bed for a future hotter world.
View Article and Find Full Text PDFUnderstanding forest loss patterns in Amazonia, the Earth's largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001-2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia.
View Article and Find Full Text PDFWetlands are the largest global source of atmospheric methane (CH), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH in the tropics, consistently underestimate the atmospheric burden of CH determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH emissions. Here we report CH fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin.
View Article and Find Full Text PDF