While blood-brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington's disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs).
View Article and Find Full Text PDFBackground And Purpose: DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential.
Experimental Approach: The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.
We reported recently the Structure-Activity Relationship (SAR) of a class of CXCL8 allosteric modulators. They invariably share a 2-arylpropionic moiety so far considered a key structural determinant of the biological activity. We show the results of recent SAR studies on a novel series of phenylacetic derivatives supported by a combined approach of mutagenesis experiments and conformational analysis.
View Article and Find Full Text PDFRepertaxin is a new non-competitive allosteric blocker of interleukin-8 (CXCL8/IL-8) receptors (CXCR1/R2), which by locking CXCR1/R2 in an inactive conformation prevents receptor signaling and human polymorphonuclear leukocyte (PMN) chemotaxis. Given the unique mode of action of repertaxin it was important to examine the ability of repertaxin to inhibit a wide range of biological activities induced by CXCL8 in human leukocytes. Our results show that repertaxin potently and selectively blocked PMN adhesion to fibrinogen and CD11b up-regulation induced by CXCL8.
View Article and Find Full Text PDFThe signalling pathways leading to CXCL8/IL-8-induced human neutrophil migration have not been fully characterized. The present study demonstrates that CXCL8 induces tyrosine phosphorylation as well as enzymatic activity of proline-rich tyrosine kinase 2 (Pyk2), a non-receptor protein tyrosine kinase (PTK), in human neutrophils. Induction of Pyk2 tyrosine phosphorylation by CXCL8 is regulated by Src PTK activation, whereas it is unaffected by phosphatidylinositol 3-kinase activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2003
The lupus-like autoimmune syndrome of MRL/Mp-Tnfrsf6lpr (lpr) mice is characterized by progressive lymphadenopathy and autoantibody production, leading to early death from renal failure. Activation of T helper lymphocytes is one of the events in the pathogenesis of the disease in these mice and likely in human systemic lupus erythematosus. Among T helper lymphocyte-dependent cytokines, IFN-gamma plays a pivotal role in the abnormal cell activation and the fatal development of the lpr disease.
View Article and Find Full Text PDFThe ciliary neurotrophic factor receptor is critically involved in embryonic motor neuron development. Postnatally, it may contribute to neuronal maintenance and regeneration. In addition, pharmacological stimulation of the receptor may slow the progression of several neurodegenerative disorders.
View Article and Find Full Text PDFLeptin is an adipocyte-secreted hormone that regulates body weight and exerts effects on hematopoiesis, reproduction, and immunity. The leptin receptor (OBR) shares sequence similarity and signaling capabilities with receptors for cytokines of the ciliary neurotrophic factor (CNTF) family. Our previous finding that CNTF and leptin exert similar anti-obesity effects and activate common neuronal signaling pathways, prompted us to investigate whether leptin may share with CNTF the ability to regulate the expression of specific neuronal genes.
View Article and Find Full Text PDFThe adeno-associated virus (AAV) is unique in its ability to target viral DNA integration to a defined region of human chromosome 19 (AAVS1). Since AAVS1 sequences are not conserved in a rodent's genome, no animal model is currently available to study AAV-mediated site-specific integration. We describe here the generation of transgenic rats and mice that carry the AAVS1 3.
View Article and Find Full Text PDFNeuroimmunomodulation
September 1998
Since ciliary neurotrophic factor (CNTF) inhibits the production of TNF and activates the hypothalamus-pituitary-adrenal axis (HPAA), we investigated whether CNTF can produce antiinflammatory actions and whether it may act through a central mechanism, using the murine air pouch model of inflammation. In this model, inflammation is evaluated by measuring the induction of TNF and IL-6 as well as cell recruitment in the pouch fluid 24 h after carrageenan. Intracerebroventricular injection, but not intravenous or local injection of CNTF markedly inhibited inflammation.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR) and the signal-transducing beta-subunits gp130 and leukemia inhibitory factor receptor-beta (LIFR). CNTFR can function in either membrane-bound or soluble forms. The membrane-bound form mediates the neuronal actions of CNTF, whereas the soluble form serves to confer cytokine responsiveness to non-neuronal cells expressing gp130 and LIFR.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 1997
Receptor subunits for the neurocytokine ciliary neurotrophic factor (CNTF) share sequence similarity with the receptor for leptin, an adipocyte-derived cytokine involved in body weight homeostasis. We report here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance. Systemic administration of CNTF or leptin led to rapid induction of the tis-11 primary response gene in the arcuate nucleus, suggesting that both cytokines can signal to hypothalamic satiety centers.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis.
View Article and Find Full Text PDFHuman CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand-specific alpha-receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross-reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure-function relationships and to develop analogs with increased receptor specificity, the cytokine was submitted to affinity maturation using phage display technology.
View Article and Find Full Text PDFWe report the display of human ciliary neurotrophic factor (hCNTF), a survival factor for neuronal cells belonging to the alpha-helical cytokine superfamily, on the surface of the filamentous bacteriophage fd. The hCNTF cDNA was fused to a DNA sequence encoding the C-terminal domain of pIII, a minor coat protein exposed at one end of fd. Gene fusions were cloned into a plasmid containing the ColE1 plasmid and fd origins of replication, and were packaged into phagemid particles upon superinfection with M13KO7 helper phage.
View Article and Find Full Text PDFA nonradioactive receptor binding assay for ciliary neurotrophic factor (CNTF) is described. The assay is based on the interaction between biotinylated human CNTF, soluble gp130, and soluble myc-tagged CNTF receptor captured on a microtiter plate via an antibody against the myc epitope tag. Bound cytokine is revealed by alkaline phosphatase-conjugated avidin.
View Article and Find Full Text PDF