Publications by authors named "Glize K"

Improved laser illumination uniformity drives shocks and implosions to create more extreme high energy density environments. Predominantly, the geometry of experiments that can be performed is dictated by the layout of beams at laser facilities, limiting interfacility and multiscale investigations. This Letter presents the first automated, algorithmic approach for generating illumination configurations for high energy density experiments.

View Article and Find Full Text PDF

The ongoing improvement in laser technology and target fabrication is opening new possibilities for diagnostic development. An example is x-ray phase-contrast imaging (XPCI), which serves as an advanced x-ray imaging diagnostic in laser-driven experiments. In this work, we present the results of the XPCI platform that was developed at the OMEGA EP Laser-Facility to study multi-Mbar single and double shocks produced using a kilojoule laser driver.

View Article and Find Full Text PDF

The double-cone ignition (DCI) scheme has been proposed as one of the alternative approaches to inertial confinement fusion, based on direct-drive and fast-ignition, in order to reduce the requirement for the driver energy. To evaluate the conical implosion energetics from the laser beams to the plasma flows, a series of experiments have been systematically conducted. The results indicate that 89%-96% of the laser energy was absorbed by the target, with moderate stimulated Raman scatterings.

View Article and Find Full Text PDF

We describe the direct measurement of the expulsion of a magnetic field from a plasma driven by heat flow. Using a laser to heat a column of gas within an applied magnetic field, we isolate Nernst advection and show how it changes the field over a nanosecond timescale. Reconstruction of the magnetic field map from proton radiographs demonstrates that the field is advected by heat flow in advance of the plasma expansion with a velocity v_{N}=(6±2)×10^{5}  m/s.

View Article and Find Full Text PDF

Shock ignition enables high gain at low implosion velocity, reducing ablative Rayleigh-Taylor instability growth, which can degrade conventional direct drive. With this method, driving a strong shock requires high laser power and intensity, resulting in inefficiencies in the drive and the generation of hot electrons that can preheat the fuel. A new "shock-augmented ignition" pulse shape is described that, by preconditioning the ablation plasma before launching a strong shock, enables the shock ignition of thermonuclear fuel, but importantly, with substantially reduced laser power and intensity requirements.

View Article and Find Full Text PDF

A platform has been developed to study laser-direct-drive energy coupling at the National Ignition Facility (NIF) using a plastic sphere target irradiated in a polar-direct-drive geometry to launch a spherically converging shock wave. To diagnose this system evolution, eight NIF laser beams are directed onto a curved Cu foil to generate He line emission at a photon energy of 8.4 keV.

View Article and Find Full Text PDF

We developed an angular-resolved scattered-light diagnostic station (ARSDS) to extend the study of laser-plasma instabilities (LPIs) by simultaneously diagnosing their features at different angles in a single shot. The ARSDS angularly samples the scattered light using an array of fibers with flexible setups. The collected light is detected with an imaging spectrometer, a streaked spectrometer, or a fiber-optic spectrometer to provide time-integrated/time-resolved spectral information.

View Article and Find Full Text PDF

We use a subignition scale laser, the 30 kJ Omega, and a novel shallow-cone target to study laser-plasma interactions at the ablation-plasma density scale lengths and laser intensities anticipated for direct drive shock-ignition implosions at National Ignition Facility scale. Our results show that, under these conditions, the dominant instability is convective stimulated Raman scatter with experimental evidence of two plasmon decay (TPD) only when the density scale length is reduced. Particle-in-cell simulations indicate this is due to TPD being shifted to lower densities, removing the experimental back-scatter signature and reducing the hot-electron temperature.

View Article and Find Full Text PDF

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor.

View Article and Find Full Text PDF

Inertial confinement fusion fuel suffers increased x-ray radiation losses when carbon from the capsule ablator mixes into the hot-spot. Here, we present one- and two-dimensional ion Vlasov-Fokker-Planck simulations that resolve hot-spot self-heating in the presence of a localized spike of carbon mix, totalling 1.9% of the hot-spot mass.

View Article and Find Full Text PDF

In this Letter, we investigate the effect of orbital angular momentum (OAM) on elastic photon-photon scattering in a vacuum for the first time. We define exact solutions to the vacuum electromagnetic wave equation which carry OAM. Using those, the expected coupling between three initial waves is derived in the framework of an effective field theory based on the Euler-Heisenberg Lagrangian and shows that OAM adds a signature to the generated photons thereby greatly improving the signal-to-noise ratio.

View Article and Find Full Text PDF

Accurate characterization of laser pulses used in experiments is a crucial step to the analysis of their results. In this paper, a novel single-shot frequency-resolved optical gating (FROG) device is described, one that incorporates a dispersive element which allows it to fully characterize pulses up to 25 ps in duration with a 65 fs per pixel temporal resolution. A newly developed phase retrieval routine based on memetic algorithms is implemented and shown to circumvent the stagnation problem that often occurs with traditional FROG analysis programs when they encounter a local minimum.

View Article and Find Full Text PDF

Amplification of a picosecond pulse beam by a lower intensity nanosecond pulse beam was experimentally observed in a flowing plasma. Modifications of intensity distributions in beam focal spots due to nonhomogeneous energy transfer and its transient regime were investigated. The mean transferred power reached 57% of the incident power of the nanosecond pulse beam.

View Article and Find Full Text PDF

This Letter investigates experimentally the backward stimulated Raman scattering (SRS) of two copropagating, 1-μm wavelength, 1.5-ps duration laser pulses focused side by side, but not simultaneously, in a preformed underdense plasma. When the two lasers do not interact, one of the pulses (so-called strong) yields a large SRS reflectivity, while the other weak pulse is essentially ineffective as regards SRS.

View Article and Find Full Text PDF