Publications by authors named "Glikin G"

Most cancer cells exacerbate the pentose phosphate pathway (PPP) to enhance biosynthetic precursors and antioxidant defenses. Metformin, which is used as a first-line oral drug for the treatment of type 2 diabetes, has been proposed to inhibit the malignant progression of different types of cancers. However, metformin has shown poor efficacy as single agent in several clinical trials.

View Article and Find Full Text PDF

Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%).

View Article and Find Full Text PDF

Background: Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity.

Objective: Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells.

View Article and Find Full Text PDF

Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells.

View Article and Find Full Text PDF

We evaluated the effects of expression of interferon-β (IFNβ) after lipofection on melanoma cells adhesion and migration. Three canine mucosal (Ak, Br and Ol) and one human dermal (SB2) melanomas were assayed. By means of the wound healing assay, we found a significant inhibitory effect of canine IFNβ gene expression on cells migration in Br and Ol monolayers.

View Article and Find Full Text PDF

A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells.

View Article and Find Full Text PDF

Despite the important progress obtained in the treatment of some pets' malignancies, new treatments need to be developed. Being critical in cancer control and progression, the immune system's appropriate modulation may provide effective therapeutic options. In this review we summarize the outcomes of published immunogene therapy veterinary clinical trials reported by many research centers.

View Article and Find Full Text PDF

Bleomycin is a chemotherapeutic agent barely diffusible through the plasmatic membrane. We evaluated DNA/cationic lipids complexes (lipoplexes) as mediators of its uptake in four spontaneous canine melanoma derived cell lines (Ak, Bk, Br and Rkb). Cell survival after lipofection plus or minus bleomycin was determined by the acid phosphatase method and the cellular uptake of lipoplexes, carrying the E.

View Article and Find Full Text PDF

We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection.

View Article and Find Full Text PDF

We evaluated the cytotoxic effects (apoptosis, necrosis and early senescence) of human interferon-β (hIFNβ) gene lipofection. The cytotoxicity of hIFNβ gene lipofection resulted equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) on human tumor cell lines derived from Ewing's sarcoma (EW7 and COH) and colon (HT-29) carcinomas. However, it was stronger than rhIFNβ on melanoma (M8) and breast adenocarcinoma (MCF7).

View Article and Find Full Text PDF