Publications by authors named "Gligor Djogo"

Filament arrays were inscribed off-axis in the core of standard single-mode telecommunication fiber, using femtosecond laser pulses. The flexible line-by-line writing formed uniform, parallel filaments, permitting Bragg grating sensing of the photoelastic response from inside of the narrow grating plane. Active monitoring of the Bragg resonance wavelength while driving a lateral fiber tip displacement directly informed on the fiber mechanics when coupled with opto-mechanical modelling.

View Article and Find Full Text PDF

The formation of volumetric nanogratings in fused silica by femtosecond laser pulses are shown to afford new opportunities for manipulating the physical shape and tailoring the optical properties of the modification zone by harnessing unconventional beam shapes. The nanograting assembly was observed to rigorously follow the beam elongation effects induced with conical-shaped phase fronts, permitting a scaling up of the writing volume. Detailed optical characterization of birefringence, dichroism, and scattering loss pointed to flexible new ways to tune the macroscopic optical properties, with advantages in decoupling the induced phase retardation from the modification thickness by controlling the conical phase front angle.

View Article and Find Full Text PDF

We demonstrate the hybrid integration of an O-band vertical-cavity surface-emitting laser (VCSEL) onto a silicon photonic chip using a grating coupler that is optimized to simultaneously provide feedback to maintain the single emission polarization and efficient in-plane coupling. The grating coupler was fabricated on silicon-on-insulator using a standard silicon photonics foundry process, and integrated with a commercially available VCSEL. A transparent VCSEL submount was fabricated with femtosecond laser templating and chemical etching to simplify the passive and active alignment steps.

View Article and Find Full Text PDF