Background: PolyDeep is a computer-aided detection and classification (CADe/x) system trained to detect and classify polyps. During colonoscopy, CADe/x systems help endoscopists to predict the histology of colonic lesions.
Objective: To compare the diagnostic performance of PolyDeep and expert endoscopists for the optical diagnosis of colorectal polyps on still images.
Genomics studies routinely confront researchers with long lists of tumor alterations detected in patients. Such lists are difficult to interpret since only a minority of the alterations are relevant biomarkers for diagnosis and for designing therapeutic strategies. PanDrugs is a methodology that facilitates the interpretation of tumor molecular alterations and guides the selection of personalized treatments.
View Article and Find Full Text PDFDeep learning object-detection models are being successfully applied to develop computer-aided diagnosis systems for aiding polyp detection during colonoscopies. Here, we evidence the need to include negative samples for both (i) reducing false positives during the polyp-finding phase, by including images with artifacts that may confuse the detection models (e.g.
View Article and Find Full Text PDFColorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e.
View Article and Find Full Text PDFMed Intensiva (Engl Ed)
March 2022
Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.
View Article and Find Full Text PDFCompi is an application framework to develop end-user, pipeline-based applications with a primary emphasis on: (i) user interface generation, by automatically generating a command-line interface based on the pipeline specific parameter definitions; (ii) application packaging, with compi-dk, which is a version-control-friendly tool to package the pipeline application and its dependencies into a Docker image; and (iii) application distribution provided through a public repository of Compi pipelines, named Compi Hub, which allows users to discover, browse and reuse them easily. By addressing these three aspects, Compi goes beyond traditional workflow engines, having been specially designed for researchers who want to take advantage of common workflow engine features (such as automatic job scheduling or logging, among others) while keeping the simplicity and readability of shell scripts without the need to learn a new programming language. Here we discuss the design of various pipelines developed with Compi to describe its main functionalities, as well as to highlight the similarities and differences with similar tools that are available.
View Article and Find Full Text PDFMotivation: Drug immunomodulation modifies the response of the immune system and can be therapeutically exploited in pathologies such as cancer and autoimmune diseases.
Results: DREIMT is a new hypothesis-generation web tool, which performs drug prioritization analysis for immunomodulation. DREIMT provides significant immunomodulatory drugs targeting up to 70 immune cells subtypes through a curated database that integrates 4960 drug profiles and ∼2600 immune gene expression signatures.
A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected -LTBI- or uninfected -NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection.
View Article and Find Full Text PDFSepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement.
View Article and Find Full Text PDFThe human body immune system, metabolism and homeostasis are affected by microbes. Dysbiosis occurs when the homeostatic equilibrium is disrupted due to an alteration in the normal microbiota of the intestine. Dysbiosis can cause cancer, and also affect a patient's ability to respond to treatment.
View Article and Find Full Text PDFHospital-acquired Infections (HAIs) surveillance, defined as the systematic collection of data related to a certain health event, is considered an essential dimension for a prevention HAI program to be effective. In recent years, new automated HAI surveillance methods have emerged with the wide adoption of electronic health records (EHR). Here we present the validation results against the gold standard of HAIs diagnosis of the InNoCBR system deployed in the Ourense University Hospital Complex (Spain).
View Article and Find Full Text PDFModern bioinformatics and computational biology are fields of study driven by the availability of effective software required for conducting appropriate research tasks. Apart from providing reliable and fast implementations of different data analysis algorithms, these software applications should also be clear and easy to use through proper user interfaces, providing appropriate data management and visualization capabilities. In this regard, the user experience obtained by interacting with these applications via their Graphical User Interfaces (GUI) is a key factor for their final success and real utility for researchers.
View Article and Find Full Text PDFBackground: Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy.
View Article and Find Full Text PDFBackground And Objective: 2D-gel electrophoresis is widely used in combination with MALDI-TOF mass spectrometry in order to analyze the proteome of biological samples. For instance, it can be used to discover proteins that are differentially expressed between two groups (e.g.
View Article and Find Full Text PDFBackground: Student participation and the use of active methodologies in classroom learning are being increasingly emphasized. The use of intelligent systems can be of great help when designing and developing these types of activities. Recently, emerging disciplines such as 'educational data mining' and 'learning analytics and knowledge' have provided clear examples of the importance of the use of artificial intelligence techniques in education.
View Article and Find Full Text PDFSummary: High-throughput sequencing of bisulfite-converted DNA is a technique used to measure DNA methylation levels. Although a considerable number of computational pipelines have been developed to analyze such data, none of them tackles all the peculiarities of the analysis together, revealing limitations that can force the user to manually perform additional steps needed for a complete processing of the data. This article presents bicycle, an integrated, flexible analysis pipeline for bisulfite sequencing data.
View Article and Find Full Text PDFThe spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory.
View Article and Find Full Text PDFBackground And Objective: To facilitate routine analysis and to improve the reproducibility of the results, next-generation sequencing (NGS) analysis requires intuitive, efficient and integrated data processing pipelines.
Methods: We have selected well-established software to construct a suite of automated and parallelized workflows to analyse NGS data for DNA-seq (single-nucleotide variants (SNVs) and indels), CNA-seq, bisulfite-seq and ChIP-seq experiments.
Results: Here, we present RUbioSeq+, an updated and extended version of RUbioSeq, a multiplatform application that incorporates a suite of automated and parallelized workflows to analyse NGS data.
Background: Mass spectrometry is one of the most important techniques in the field of proteomics. MALDI-TOF mass spectrometry has become popular during the last decade due to its high speed and sensitivity for detecting proteins and peptides. MALDI-TOF-MS can be also used in combination with Machine Learning techniques and statistical methods for knowledge discovery.
View Article and Find Full Text PDFBackground And Objective: Biofilms are receiving increasing attention from the biomedical community. Biofilm-like growth within human body is considered one of the key microbial strategies to augment resistance and persistence during infectious processes. The Biofilms Experiment Workbench is a novel software workbench for the operation and analysis of biofilms experimental data.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2015
Background And Objectives: Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited.
View Article and Find Full Text PDF