Genetic defects in the nuclear encoded subunits and assembly factors of cytochrome c oxidase (mitochondrial complex IV) are very rare and are associated with a wide variety of phenotypes. Biallelic pathogenic variants in the COX11 protein were previously identified in two unrelated children with infantile-onset mitochondrial encephalopathies. Through comprehensive clinical, genetic and functional analyses, here we report on a new patient harboring novel heterozygous variants in , presenting with Leigh-like features, and provide additional experimental evidence for a direct correlation between COX11 protein expression and sensitivity to oxidative stress.
View Article and Find Full Text PDFThe terminal electron acceptor of most aerobic respiratory chains, cytochrome c oxidase (COX), has been highly conserved throughout evolution, from aerobic prokaryotes to complex eukaryotes. Oxygen metabolism in parasitic helminths differs significantly from that of most aerobic eukaryotes, as these organisms can switch between aerobic and anaerobic metabolisms throughout their life cycles. Early studies suggested a lack of COX activity in certain parasitic helminths, and the role of COX in helminth mitochondria remains unclear.
View Article and Find Full Text PDFTissues and organs consist of cells organized in specified patterns that support their function, as exemplified by tissues such as skin, muscle, and cornea. It is, therefore, important to understand how external cues, such as engineered surfaces or chemical contaminants, can influence the organization and morphology of cells. In this work, we studied the impact of indium sulfate on human dermal fibroblast (GM5565) viability, production of reactive oxygen species (ROS), morphology, and alignment behavior on tantalum/silicon oxide parallel line/trench surface structures.
View Article and Find Full Text PDFDespite the common belief that "training is only as effective as the trainer providing it" (Osborn, 2018, para. 1), training theory tends to underemphasize the trainer and instead focuses on training content and design as sources of training effectiveness. In this article, we examine whether the role of the trainer should be more central to training theory.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
June 2018
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy.
View Article and Find Full Text PDFElectrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity.
View Article and Find Full Text PDFElectrophoresis is an integral part of many molecular diagnostics protocols and an inexpensive implementation would greatly facilitate point-of-care (POC) applications. However, the high instrumentation cost presents a substantial barrier, much of it associated with fluorescence detection. The cost of such systems could be substantially reduced by placing the fluidic channel and photodiode directly above the detector in order to collect a larger portion of the fluorescent light.
View Article and Find Full Text PDFA number of distinct cuproproteins of the mitochondrial inner membrane are required for the assembly of cytochrome oxidase (COX), thought to function in a "bucket brigade" fashion to provide copper to the Cu(A) and Cu(B) sites. In yeast, the loss of two these proteins, Sco1p and Cox11p, leads to respiratory deficiency and a specific inability to survive exposure to hydrogen peroxide (H(2)O(2)). Using a quantitative assay, we have identified subtle differences in the peroxide-sensitive phenotypes between sco1 and cox11 mutant strains.
View Article and Find Full Text PDFPlasmids are the workhorse of contemporary molecular biology, serving as vectors in the multitude of molecular cloning approaches now available. Plasmid minipreps are a routine and essential means of extracting plasmid DNA from bacteria, such as Escherichia coli, for identification, characterization, and further manipulation. Although there have been many approaches described and miniprep kits are commercially available, traditional minipreps typically require more than 16h, including the time needed for bacterial cell culture.
View Article and Find Full Text PDFIt has been shown that the mitochondria are the dominant source of large-angle light scattering from human cells. In the limit of small mitochondria, we show that the large-angle (isotropic) light scattering of mitochondria may be analyzed and simulated with an adaptation of classical X-ray diffraction theory. In addition, we show that this approach may be extended to the case of anisotropic scatter.
View Article and Find Full Text PDFIn this work, microfluidic chips were used to study the electrophoresis of supercoiled DNA (SC DNA) in agarose. This system allowed us to study the electrophoretic and trapping behaviours of SC DNA of various lengths, at various fields and separation distances. Near a critical electric field the DNA is trapped such that the concentration falls exponentially with distance.
View Article and Find Full Text PDFATP7B is a copper transporting P-type ATPase defective in the autosomal recessive copper storage disorder, Wilson disease (WND). Functional assessment of variants helps to distinguish normal from disease-causing variants and provides information on important amino acid residues. A total of 11 missense variants of ATP7B, originally identified in WND patients, were examined for their capacity to functionally complement a yeast mutant strain in which the yeast gene ortholog, CCC2, was disrupted.
View Article and Find Full Text PDFAntiretroviral toxic neuropathy (ATN) has become a common peripheral neuropathy among HIV/AIDS patients, for which the underlying pathogenesis is uncertain. Indeed, no models exist for ATN that assess the interaction between retroviral infection and antiretroviral therapy. Herein, we developed ex vivo and in vivo models of ATN induced by didanosine (ddI) following infection by the lentivirus, feline immunodeficiency virus (FIV), permitting us to address the working hypothesis that ddI mediates ATN through mitochondrial injury in neurons.
View Article and Find Full Text PDFBiochem Cell Biol
December 2006
The biogenesis of the inner mitochondrial membrane enzyme cytochrome c oxidase (COX) is a complex process that requires the actions of ancillary proteins, collectively called assembly factors. Studies with the yeast Saccharomyces cerevisiae have provided considerable insight into the COX assembly pathway and have proven to be a fruitful model for understanding the molecular bases for inherited COX deficiencies in humans. In this review, we focus on critical steps in the COX assembly pathway.
View Article and Find Full Text PDFCox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2005
Abnormalities in mitochondrial function play a major role in many human diseases. It is often of critical importance to ascertain what proportion of the mitochondria within a cell, or cells, bear a given mutation (the mitochondrial "demographics"). In this work, a rapid, novel, on-chip procedure was used, in which a restriction enzyme was employed to excise a mitochondrial DNA (mtDNA) sequence from plasmid DNA that acted as a prototypical mitochondrial genome.
View Article and Find Full Text PDFHuman SCO1 and SCO2 are copper-binding proteins involved in the assembly of mitochondrial cytochrome c oxidase (COX). We have determined the crystal structure of the conserved, intermembrane space core portion of apo-hSCO1 to 2.8 A.
View Article and Find Full Text PDFMarked progress has been made over the past 15 years in defining the specific biochemical defects and underlying molecular mechanisms of oxidative phosphorylation disorders, but limited information is currently available on the development and evaluation of effective treatment approaches. Metabolic therapies that have been reported to produce a positive effect include coenzyme Q(10) (ubiquinone), other antioxidants such as ascorbic acid and vitamin E, riboflavin, thiamine, niacin, vitamin K (phylloquinone and menadione), and carnitine. The goal of these therapies is to increase mitochondrial ATP production, and to slow or arrest the progression of clinical symptoms.
View Article and Find Full Text PDFMitochondrial disorders are degenerative diseases characterized by a decrease in the ability of mitochondria to supply cellular energy requirements. Substantial progress has been made in defining the specific biochemical defects and underlying molecular mechanisms, but limited information is available about the development and evaluation of effective treatment approaches. The goal of nutritional cofactor therapy is to increase mitochondrial adenosine 5'-triphosphate production and slow or arrest the progression of clinical symptoms.
View Article and Find Full Text PDFThe provision of copper to cytochrome oxidase is one of the requisite steps in the assembly of the holoenzyme. Several proteins are involved in this process including Cox17p, Sco1p, and Cox11p. Cox17p, an 8-kDa protein, is the only molecule thought to be involved in shuttling copper from the cytoplasm into mitochondria.
View Article and Find Full Text PDFBiochemical analysis of oxidative phosphorylation (OXPHOS) disorders is traditionally carried out on muscle biopsies, cultured fibroblasts, and transformed lymphocytes. Here we present a new screening technique using lymphocytes to identify OXPHOS dysfunction and initially avoid an invasive diagnostic procedure. Lymphocytes represent an easily obtainable source of tissue that presents advantages over the use of fibroblasts or lymphoblast cell lines.
View Article and Find Full Text PDFDeficiencies in the activity of cytochrome c oxidase (COX), the terminal enzyme in the respiratory chain, are a frequent cause of autosomal recessive mitochondrial disease in infants. These patients are clinically and genetically heterogeneous, and all defects so far identified in this group have been found in genes coding for accessory proteins that play important roles in the assembly of the COX holoenzyme complex. Many patients, however, remain without a molecular diagnosis.
View Article and Find Full Text PDFWe have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded by COX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome. COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants.
View Article and Find Full Text PDF