Publications by authors named "Glennice N Bowen"

Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a common cause of infection that is associated with a range of respiratory illnesses, from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children <1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected to contribute to RSV disease.

View Article and Find Full Text PDF

Influenza virus infection of the respiratory tract is characterized by a neutrophil infiltrate accompanied by inflammatory cytokine and chemokine production. We and others have reported that Toll-like receptor (TLR) proteins are present on human neutrophils and that granulocyte-macrophage colony-stimulating factor (GM-CSF) treatment enhances IL-8 (CXCL8) secretion in response to stimulation with TLR ligands. We demonstrate that influenza virus can induce IL-8 and other inflammatory cytokines from GM-CSF-primed human neutrophils.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are critically involved in the innate immune response to bacterial, viral and fungal pathogens. We have studied human peripheral blood mononuclear cells, murine embryonic fibroblasts (MEFs) and a panel of human cell lines, including HEK, HeLa, AGS, ECV304 and U373 cells, for expression of TLR-specific mRNAs and for TLR-ligand dependent cytokine secretion. Peripheral blood cells expressed multiple TLRs; however, many studies have shown that blood contains multiple, heterogeneous cell populations with distinct patterns of TLR expression.

View Article and Find Full Text PDF