Publications by authors named "Glenn Villena Latag"

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms.

View Article and Find Full Text PDF

Using machine learning based on a random forest (RF) regression algorithm, we attempted to predict the amount of adsorbed serum protein on polymer brush films from the films' physicochemical information and the monomers' chemical structures constituting the films using a RF model. After the training of the RF model using the data of polymer brush films synthesized from five different types of monomers, the model became capable of predicting the amount of adsorbed protein from the chemical structure, physicochemical properties of monomer molecules, and structural parameters (density and thickness of the films). The analysis of the trained RF quantitatively provided the importance of each structural parameter and physicochemical properties of monomers toward serum protein adsorption (SPA).

View Article and Find Full Text PDF

In this paper, we propose a new spectroscopic method to explore the behavior of molecules near polymeric molecular networks of water-containing soft materials such as hydrogels. We demonstrate the analysis of hydrogen bonding states of water in the vicinity of hydrogels (soft contact lenses). In this method, we apply force to hydrated contact lenses to deform them and to modulate the ratio between the signals from bulk and vicinal regions.

View Article and Find Full Text PDF