Publications by authors named "Glenn Sammis"

Herein, we demonstrate a method for the syntheses of sulfinamides and sulfinate esters using a novel sulfur(IV) fluoride exchange reaction with organometallic reagents. Our strategy involves the addition of an amine or alcohol nucleophile to thionyl fluoride, acting as a S(IV) SuFEx hub, followed by an organometallic reagent. This approach allows efficient access to sulfinamides (45-91% yields) and sulfinate esters (44-82% yields) in only 30 minutes.

View Article and Find Full Text PDF

Organophosphorus(V) fluorides have a long and tumultuous history, with early applications as toxins and nerve agents reflecting their poisonous past. Behind these very real safety considerations, there is also growing potential in a wide range of fields, from chemical biology to drug development. The recent inclusion of organophosphorus(V) fluorides in click chemistry exemplifies the promise these compounds possess and brings these molecules to the brink of a resurgence.

View Article and Find Full Text PDF

The legalisation of hemp has led to wide commercial availability of cannabidiol (CBD)-containing products. Here we show that the CBD-hydroxyquinone (HU-331), a readily formed oxidation product and common impurity in CBD isolates, undergoes a previously unknown photo-isomerisation to produce a highly reactive intermediate in solution. Studies supported by calculations indicate that this intermediate rapidly reacts with oxygen to form a multitude of cannabinoid products.

View Article and Find Full Text PDF

Sulfur(vi) fluoride exchange chemistry has been reported to be effective at synthesizing valuable sulfur(vi) functionalities through sequential nucleophilic additions, yet oxygen-based nucleophiles are limited in this approach to phenolic derivatives. Herein, we report a new sulfur(iv) fluoride exchange strategy to access synthetically challenging substituted sulfamate esters from alkyl alcohols and amines. We also report the development of a non-gaseous, sulfur(iv) fluoride exchange reagent, -methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF).

View Article and Find Full Text PDF

Herein, we demonstrate two complementary strategies for the syntheses of sulfonyl fluorides using sulfonic acids and their salts. One strategy involves the conversion of sulfonic acid sodium salts to sulfonyl fluorides using thionyl fluoride in 90-99% yields in one hour. Lessons learned from the mechanism of this reaction also have enabled a complementary deoxyfluorination of sulfonic acids using Xtalfluor-E® - a bench stable solid - allowing for the conversion of both aryl and alkyl sulfonic acids and salts to sulfonyl fluorides in 41-94% yields.

View Article and Find Full Text PDF

The opioid overdose crisis in North America worsened during the COVID-19 pandemic, with multiple jurisdictions reporting more deaths per day due to the fentanyl-contaminated drug supply than COVID-19. The rapid quantitative detection of fentanyl in the illicit opioid drug supply or in bodily fluids at biologically relevant concentrations (i.e.

View Article and Find Full Text PDF

Thionyl fluoride (SOF) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study.

View Article and Find Full Text PDF

Thionyl fluoride (SOF) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the generation of SOF and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times.

View Article and Find Full Text PDF

The past decade has witnessed remarkable growth of catalytic transformations in organic sulfur(VI) fluoride chemistry. This Perspective concentrates exclusively on foundational examples that utilize catalytic strategies to synthesize and react S(VI) fluorides. Key mechanistic studies that aim to provide insight toward future catalytic systems are emphasized.

View Article and Find Full Text PDF

Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SOF-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SOF-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield).

View Article and Find Full Text PDF

Herein, we report a new one-pot sequential method for SOF-mediated nucleophilic acyl substitution reactions starting from carboxylic acids. A mechanistic study revealed that SOF-mediated acid activation proceeds via the anhydride, which is then converted to the corresponding acyl fluoride. Tetrabutylammonium chloride or bromide accelerate the formation of acyl fluoride.

View Article and Find Full Text PDF

The photoelectrochemical decomposition of lignin model compounds at a BiVO photoanode is demonstrated with simulated sunlight and an applied bias of 2.0 V. These prototypical lignin model compounds are photoelectrochemically converted into the corresponding aryl aldehyde and phenol derivatives in a single step with conversion of up to ≈64 % over 20 h.

View Article and Find Full Text PDF

Herein, we report a new method for the one-pot synthesis of 1,1-dihydrofluoroalkyl sulfides by bubbling sulfuryl fluoride (SOF) through a solution of the corresponding alcohol and thiol. The reaction proceeds through a new class of bis(1,1-dihydrofluoroalkyl) sulfate reagents, to afford the desired 1,1-dihydrofluoroalkyl sulfides in 55-90% isolated yields. The bis(1,1-dihydrofluoroalkyl) sulfates are highly chemoselective for thiol alkylation, and are unreactive with competing, unprotected nucleophiles, including amines, alcohols, and carboxylic acids.

View Article and Find Full Text PDF

The Mitsunobu reaction is a powerful transformation for the one-pot activation and substitution of aliphatic alcohols. Significant efforts have focused on modifying the classic conditions to overcome problems associated with purification from phosphine-based byproducts. Herein, we report a phosphine free method for alcohol activation and substitution that is mediated by sulfuryl fluoride.

View Article and Find Full Text PDF

Herein, we report a new method for the one-pot syntheses of sulfonyl fluorides. Addition of an alkyl, aryl, or heteroaryl Grignard to a solution of sulfuryl fluoride at ambient temperature affords the desired sulfonyl fluorides in 18-78% yield. Furthermore, this method is applicable for in situ sequential reactions, whereby the Grignard reagent can be converted to the corresponding diarylsulfone, sulfonate ester, or sulfonamide in a one-pot process.

View Article and Find Full Text PDF

Primary amine products have been prepared using zirconium-catalyzed hydroaminoalkylation of alkenes with -silylated benzylamine substrates. Catalysis using commercially available Zr(NMe) affords an alternative disconnection to access α-arylated primary amines upon aqueous workup. Substrate-dependent regio- and diastereoselectivity of the reaction is observed.

View Article and Find Full Text PDF

Sulfuryl fluoride, SOF, has been known and used as a fumigant for over 50 years but it has only recently gained widespread interest as a reagent for organic synthesis. Herein we report a novel application of sulfuryl fluoride gas in a new 1,1-dihydrofluoroalkylation reaction, which simply involves bubbling SOF through a solution of amine, 1,1-dihydrofluoroalcohol, and diisopropylethylamine. The reaction is successful for a wide range of primary and secondary amines, as well as several 1,1-dihydrofluoroalcohols, to afford the 1,1-dihydrofluoroalkylated amines in 42% to 80% isolated yields.

View Article and Find Full Text PDF

Tetrahydrophthalazine derivatives have found important applications in pharmaceutical research, but existing synthetic methods are unable to access them regio- and stereoselectively. Here, a new approach is presented that addresses these challenges by utilizing a 6-endo-trig radical cyclization in the key step. The desired tetrahydrophthalazines can be accessed in high yields (55-98 %) and high diastereoselectivities for the trans-product (>95:5) starting either from readily accessible hydrazones, or from the corresponding aldehydes and substituted Boc-hydrazides in a one-pot process.

View Article and Find Full Text PDF

There is a global effort to convert sunlight into fuels by photoelectrochemically splitting water to form hydrogen fuels, but the dioxygen byproduct bears little economic value. This raises the important question of whether higher value commodities can be produced instead of dioxygen. We report here photoelectrochemistry at a BiVO photoanode involving the oxidation of substrates in organic media.

View Article and Find Full Text PDF

XeF2 is demonstrated to be a more proficient fluorine-transfer reagent than either NFSI or Selectfluor in fluorodecarboxylations of both mono- and difluoroaryloxy acetic acid derivatives. This method efficiently converts a wide range of neutral and electron-poor substrates to afford the desired di- and trifluoromethyl aryl ethers in good to excellent yields. The purifications are facile, and the reaction times are less than 5 min, which makes these fluorodecarboxylations promising for future PET-imaging applications.

View Article and Find Full Text PDF

A three-component carboetherification of unactivated alkenes has been developed allowing the rapid building of complexity from simple starting materials. A wide range of α-substituted styrenes underwent smooth reactions with unactivated alkyl nitriles and alcohols to afford γ-alkoxy alkyl nitriles with concomitant generation of a quaternary carbon center. A radical clock experiment provided clear-cut evidence that the reaction proceeds through a tertiary alkyl radical intermediate.

View Article and Find Full Text PDF

Radical relay cyclizations initiated by alkoxy radicals are a powerful tool for the rapid construction of substituted tetrahydrofurans. The scope of these relay cyclizations has been dramatically increased with the development of two strategies that utilize an oxygen atom in the substrate to accelerate the desired hydrogen atom transfer (HAT) over competing pathways. This has enabled a chemoselective 1,6-HAT over a competing 1,5-HAT.

View Article and Find Full Text PDF

The highly efficient and diastereoselective synthesis of E dienes has been accomplished through radical cyclization of bromoallyl hydrazones. This methodology has been further extended to generate these products through a one-pot condensation/radical cyclization/cycloreversion cascade from simple aldehyde starting materials in high yields (>75%) and high diastereoselectivities (>95:5). Mechanistic investigations suggest that the cascade reaction proceeds through a cyclic diazene intermediate prior to the cycloreversion.

View Article and Find Full Text PDF

We have developed the first example of a photoredox catalytic method for the formation of carbon-fluorine (C-F) bonds. The mechanism has been studied using transient absorption spectroscopy and involves a key single-electron transfer from the (3)MLCT (triplet metal-to-ligand charge transfer) state of Ru(bpy)3(2+) to Selectfluor. Not only does this represent a new reaction for photoredox catalysis, but the mild reaction conditions and use of visible light also make it a practical improvement over previously developed UV-mediated decarboxylative fluorinations.

View Article and Find Full Text PDF