Bradykinin (BK) plays an important role in the pathophysiological processes accompanying pain and inflammation. Selective bradykinin B1 receptor antagonists have been shown to be anti-nociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. We have explored chemical modifications in a series of dihydroquinoxalinone sulfonamides to evaluate the effects of various structural changes on biological activity.
View Article and Find Full Text PDFSubstance P receptor [neurokinin 1 (NK1] antagonists (SPAs) represent a novel mechanistic approach to antidepressant therapy with comparable clinical efficacy to selective serotonin reuptake inhibitors (SSRIs). Because SSRIs are thought to exert their therapeutic effects by enhancing central serotonergic function, we have examined whether SPAs regulate neuronal activity in the dorsal raphe nucleus (DRN), the main source of serotonergic projections to the forebrain. Using in vivo electrophysiological techniques in the guinea pig, we found that administration of the highly selective NK1 receptor antagonist 1-(5-[[(2R,3S)-2-([(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethyl]oxy)-3-(4-phenyl)morpholin-4-yl]methyl]-2H-1,2,3-triazol-4-yl)-N,N-dimethylmethanamine (L-760735) caused an increase in DRN neuronal firing rate.
View Article and Find Full Text PDFThere are two bradykinin receptor subtypes, designated B1 and B2. Whilst both have been implicated in nociception, it is believed that there is a low level of constitutive expression of B1 receptors and that their expression is induced by inflammation or tissue damage. The present study investigated the role of B1 receptors in spinal nociceptive processing using an in vivo electrophysiological assay in decerebrate, spinalized rabbits, a species that shares close B1 receptor homology with the human receptor.
View Article and Find Full Text PDF