In this field guide, we outline empirical and theory-based approaches to characterize the fundamental properties of liquid multivalent-ion battery electrolytes, including (i) structure and chemistry, (ii) transport, and (iii) electrochemical properties. When detailed molecular-scale understanding of the multivalent electrolyte behavior is insufficient we use examples from well-studied lithium-ion electrolytes. In recognition that coupling empirical and theory-based techniques is highly effective, but often nontrivial, we also highlight recent electrolyte characterization efforts that uncover a more comprehensive and nuanced understanding of the underlying structures, processes, and reactions that drive performance and system-level behavior.
View Article and Find Full Text PDFThe synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor.
View Article and Find Full Text PDF