Background: Animals exposed to sevoflurane during development sustain neuronal cell death in their developing brains. In vivo micro-positron emission tomography (PET)/computed tomography imaging has been utilized as a minimally invasive method to detect anesthetic-induced neuronal adverse effects in animal studies.
Methods: Neonatal rhesus monkeys (postnatal day 5 or 6, 3 to 6 per group) were exposed for 8 h to 2.
Neural progenitor cell expansion is critical for normal brain development and an appropriate response to injury. During the brain growth spurt, exposures to general anesthetics, which either block the N-methyl-d-aspartate receptor or enhance the γ-aminobutyric acid receptor type A can disturb neuronal transduction. This effect can be detrimental to brain development.
View Article and Find Full Text PDFTypically, time-consuming standard toxicological assays using the zebrafish (Danio rerio) embryo model evaluate mortality and teratogenicity after exposure during the first 2 days post-fertilization. Here we describe an automated image-based high content screening (HCS) assay to identify the teratogenic/embryotoxic potential of compounds in zebrafish embryos in vivo. Automated image acquisition was performed using a high content microscope system.
View Article and Find Full Text PDFAim: The purpose of the current study was to determine whether copper nanoparticles (Cu-NPs) can induce the release of proinflammatory mediators that influence the restrictive characteristics of the blood-brain barrier.
Material & Methods: Confluent rat brain microvessel endothelial cells (rBMECs) were treated with well-characterized Cu-NPs (40 or 60 nm). Cytotoxicity of the Cu-NPs was evaluated by cell proliferation assay (1.
Amyloid-beta peptide (Aβ) deposition is assumed to play a pathogenic role in the brain of Alzheimer's disease patients. To date, the precise mechanisms underlying Aβ toxicity are not fully understood. A recent hypothesis suggesting that the Receptor-for-Advanced-Glycation-End-Products (RAGE)-a trans-membrane protein signaling for oxidative stress-is involved in Aβ toxicity is gaining attention.
View Article and Find Full Text PDFThis report examined blood-brain barrier (BBB) related proinflammatory mediators and permeability changes in response to various sized gold nanoparticles (Au-NPs) (3, 5, 7, 10, 30 and 60 nm) in vitro using primary rat brain microvessel endothelial cells (rBMEC). The Au-NPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and laser Doppler velocimetry (LDV). The accumulation of Au-NPs was determined spectrophotometrically.
View Article and Find Full Text PDFThe current report examines the interactions of silver nanoparticles (Ag-NPs) with the cerebral microvasculature to identify the involvement of proinflammatory mediators that can increase blood-brain barrier (BBB) permeability. Primary rat brain microvessel endothelial cells (rBMEC) were isolated from adult Sprague-Dawley rats for an in vitro BBB model. The Ag-NPs were characterized by transmission electron microscopy (TEM), dynamic light scattering, and laser Doppler velocimetry.
View Article and Find Full Text PDFQuinolinic acid (QUIN)-induced toxicity is characterized by N-methyl-d-aspartate receptors over-activation, excitotoxicity and oxidative damage. The characterization of toxic cascades produced by QUIN during the first hours after its striatal infusion is relevant for understanding toxic mechanisms. The role of the receptor-for-advanced-glycation-end-products (RAGE) in the early toxic pattern induced by QUIN was evaluated.
View Article and Find Full Text PDFNanoparticles have received a great deal of attention for producing new engineering applications due to their novel physicochemical characteristics. However, the broad application of nanomaterials has also produced concern for nanoparticle toxicity due to increased exposure from large-scale industry production. This study was conducted to investigate the potential neurotoxicity of manganese (Mn), silver (Ag), and copper (Cu) nanoparticles using the dopaminergic neuronal cell line, PC12.
View Article and Find Full Text PDFIt has been reported that suppression of N-methyl-D-aspartate (NMDA) receptor function by ketamine may trigger apoptosis of neurons when given repeatedly during the brain growth spurt period. Because microPET scans can provide in vivo molecular imaging at sufficient resolution, it has been proposed as a minimally invasive method for detecting apoptosis using the tracer (18)F-labeled annexin V. In this study, the effect of ketamine on the metabolism and integrity of the rat brain were evaluated by investigating the uptake and retention of (18)F-fluorodeoxyglucose (FDG) and (18)F-annexin V using microPET imaging.
View Article and Find Full Text PDFAcrylamide is a chemical known to produce neurotoxicity in animals, as well as in humans. The mechanism of acrylamide-induced neurotoxicity is not fully known. However, recent studies have revealed that acrylamide affects the dopaminergic system.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of midbrain dopaminergic neurons with unknown etiology. MPP+ (1-methyl-4-phenylpyridinium ion) is the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces Parkinson's-like symptoms in humans and animals. MPTP/MPP+ produces selective dopaminergic neuronal degeneration, therefore, these agents are commonly used to study the pathogenesis of PD.
View Article and Find Full Text PDFPlasma levels of parent compounds and metabolites were determined in adult rhesus monkeys after doses of either 5mg/kg d-fenfluramine (FEN) or 10mg/kg d-3, 4-methylenedioxymethamphetamine (MDMA) i.m. twice daily for four consecutive days.
View Article and Find Full Text PDFMethamphetamine (METH) is a widely abused psychomotor stimulant known to cause dopaminergic neurotoxicity in rodents, nonhuman primates, and humans. METH administration selectively damages the dopaminergic nerve terminals, which is hypothesized to be due to release of dopamine from synaptic vesicles within the terminals. This process is believed to be mediated by the production of free radicals.
View Article and Find Full Text PDFThe placental transfer of conjugated and nonconjugated estrogens was compared in the pregnant rhesus monkey. Placement of catheters in the maternal and fetal circulation allowed for the sampling of blood after the administration of radiolabeled naturally occurring and synthetic estrogens to mother or fetus. In all cases, nonconjugated-estrogen placental transfer was greater than conjugated-estrogen transfer.
View Article and Find Full Text PDF