Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF and CuF. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F sublattices and that of LiF is established.
View Article and Find Full Text PDFSensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.
View Article and Find Full Text PDFAluminum is a common dopant across oxide cathodes for improving the bulk and cathode-electrolyte interface (CEI) stability. Aluminum in the bulk is known to enhance structural and thermal stability, yet the exact influence of aluminum at the CEI remains unclear. To address this, we utilized a combination of X-ray photoelectron and absorption spectroscopy to identify aluminum surface environments and extent of transition metal reduction for Ni-rich LiNiCoAlyO (0%, 5%, or 20% Al) layered oxide cathodes tested at 4.
View Article and Find Full Text PDFEnabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[NiCoAl]O (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation.
View Article and Find Full Text PDFMixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution.
View Article and Find Full Text PDFSodium-ion batteries utilize various electrode materials derived from lithium batteries. However, the different characteristics inherent in sodium may cause unexpected cell reactions and battery performance. Thus, identifying the reactive discrepancy between sodiation and lithiation is essential for fundamental understanding and practical engineering of battery materials.
View Article and Find Full Text PDFThe complex coupling of atomic, chemical, and electronic transformations across multiple length scales underlies the performance of electrochemical energy storage devices. Here, the coupling of chemistry with atomic- and nanoscale structure in iron conversion electrodes is resolved by combining pair distribution function (PDF) and small-angle X-ray scattering (SAXS) analysis for a series of Fe fluorides, oxyfluorides, and oxides. The data show that the anion chemistry of the initial electrode influences the abundance of atomic defects in the Fe atomic lattice.
View Article and Find Full Text PDFPotentiostatic intermittent titration technique (PITT) was applied to FeF2, FeF3, and FeO0.67F1.33 to gain insight into the transport-related aspects of the conversion reaction by quantitative analysis of Li(+) diffusion and hysteresis.
View Article and Find Full Text PDFIn-depth analysis of operando X-ray pair distribution function (PDF) data is combined with Li NMR spectroscopy to gain comprehensive insights into the electrochemical reaction mechanism of high-performance iron oxyfluoride electrodes. While the full discharge capacity could be recovered upon charge, implying reversibility of the electrochemical reaction, the atomic structure of the electrode formed after cycling (discharge-charge) differs from the pristine uncycled electrode material. Instead, the "active" electrode that forms upon cycling is a nanocomposite of an amorphous rutile phase and a nanoscale rock salt phase.
View Article and Find Full Text PDFExpectations for the next generation of lithium batteries include greater energy and power densities along with a substantial increase in both calendar and cycle life. Developing new materials to meet these goals requires a better understanding of how electrodes function by tracking physical and chemical changes of active components in a working electrode. Here we develop a new, simple in-situ electrochemical cell for the transmission electron microscope and use it to track lithium transport and conversion in FeF(2) nanoparticles by nanoscale imaging, diffraction and spectroscopy.
View Article and Find Full Text PDFMaterials that undergo a conversion reaction with lithium (e.g., metal fluorides MF(2): M = Fe, Cu, .
View Article and Find Full Text PDFA new type of positive electrode for Li-ion batteries has been developed recently based on FeF3/C and FeF2/C nanocomposites. The microstructural and redox evolution during discharge and recharge processes was followed by electron energy loss spectroscopy (EELS) to determine the valence state of Fe by measuring the Fe L3 line energy shift and from Fe L3/L2 line intensity ratios. In addition, transition metal fluorides were found to be electron beam sensitive, and the effect of beam exposure on EELS spectra was also investigated.
View Article and Find Full Text PDF