Drug combinations are a promising strategy to overcome the compensatory mechanisms and unwanted off-target effects that limit the utility of many potential drugs. However, enthusiasm for this approach is tempered by concerns that the therapeutic synergy of a combination will be accompanied by synergistic side effects. Using large scale simulations of bacterial metabolism and 94,110 multi-dose experiments relevant to diverse diseases, we provide evidence that synergistic drug combinations are generally more specific to particular cellular contexts than are single agent activities.
View Article and Find Full Text PDFEfforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells.
View Article and Find Full Text PDFOver the last decade, gene expression microarrays have had a profound impact on biomedical research. The diversity of platforms and analytical methods available to researchers have made the comparison of data from multiple platforms challenging. In this study, we describe a framework for comparisons across platforms and laboratories.
View Article and Find Full Text PDFThe stimulation of cellular cholesterol and phospholipid efflux by apolipoprotein A-I is mediated by the activity of the ATP-binding cassette transporter A1 (ABCA1). Individuals with Tangier disease harbor loss-of-function mutations in this transporter that have proven useful in illuminating its activity. Here, we analyze a mutation that deletes the last 46 residues of the 2261 amino acid transporter (Delta46) and eliminates its lipid efflux.
View Article and Find Full Text PDF