Publications by authors named "Glenn Cartwright"

The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab.

View Article and Find Full Text PDF

Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth.

View Article and Find Full Text PDF

[¹⁸F]FMISO is the most widely validated PET radiotracer for imaging hypoxic tissue. However, as a result of the pharmacokinetics of [¹⁸F]FMISO a 2h wait between tracer administration and patient scanning is required for optimal image acquisition. In order to develop hypoxia imaging agents with faster kinetics, we have synthesised and evaluated several F-18 labelled anilino sulfoxides.

View Article and Find Full Text PDF

Purpose: CS-1008 (tigatuzumab; phase I/II), an antihuman death receptor 5 (DR5) agonist, induces apoptosis and has cytotoxic activity against human cancer cell lines. This study reports on the preclinical validation of (111)In-labeled anti-DR5 humanized antibody CS-1008 as a diagnostic tool to study the DR5 occupancy in patients with cancer and establish dose ranges for receptor saturation kinetics in vivo.

Experimental Design: CS-1008 was radiolabeled and characterized for DR5 binding and labeling efficiency on TRAIL-sensitive DR5-positive colorectal cancer cells (COLO 205 and WiDr).

View Article and Find Full Text PDF

The significance of imaging hypoxia with the PET ligand [(18)F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18)F]FMISO require a 2-h delay between tracer administration and patient scanning. Labelled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18)F]FMISO in a rat model of ischemic stroke.

View Article and Find Full Text PDF

While considerable effort has focused on developing positron emission tomography β-amyloid imaging radiotracers for the early diagnosis of Alzheimer's disease, no radiotracer is available for the non-invasive quantification of tau. In this study, we detail the characterization of (18)F-THK523 as a novel tau imaging radiotracer. In vitro binding studies demonstrated that (18)F-THK523 binds with higher affinity to a greater number of binding sites on recombinant tau (K18Δ280K) compared with β-amyloid(1-42) fibrils.

View Article and Find Full Text PDF

Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells.

View Article and Find Full Text PDF

In this study, human T cells were provided with a reactivity against the Lewis-Y (Le(Y)) carbohydrate antigen, which is overexpressed on 70% of epithelial-derived tumors, but not normally recognized by T cells. Antitumor reactivity was achieved by transduction of T cells with a gene encoding a cell-surface chimeric receptor composed of single-chain anti-Le(Y) antibody linked to an enhanced cytoplasmic signaling domain made up of CD28 and CD3-zeta. Importantly, the single-chain antibody was humanized to try to reduce potential problems of human anti-mouse antibody responses in patients receiving chimeric receptor-modified T cells in future clinical trials.

View Article and Find Full Text PDF

Overexpression of the EGFR is commonly caused by EGFR gene amplification and is sometimes associated with expression of a variant EGFR (de2-7 EGFR or EGFRvIII) bearing an internal deletion in its extracellular domain. mAb 806 is a novel EGFR antibody with significant antitumor activity that recognizes both the de2-7 EGFR and a subset of the wild-type (wt) EGFR when overexpressed, but does not bind the EGFR expressed in normal tissues. Recently, we demonstrated that the mAb 806 epitope is restricted to a short cysteine loop of the EGFR (amino acids 287-302) that is only available for antibody binding in a transitional form of the receptor, which occurs as the receptor changes from its inactive tethered conformation to a dimeric untethered form.

View Article and Find Full Text PDF

The chimeric monoclonal antibody ch806 specifically targets the tumor-associated mutant epidermal growth factor receptor (de 2-7EGFR or EGFRVIII) and is currently under investigation for its potential use in cancer therapy. The humanised monoclonal antibody hu3S193 specifically targets the Lewis Y epithelial antigen and is currently in Phase I clinical trials in patients with advanced breast, colon, and ovarian carcinomas. To assist the clinical evaluation of ch806 and hu3S193, laboratory assays are required to monitor their serum pharmacokinetics and quantitate any immune responses to the antibodies.

View Article and Find Full Text PDF