Publications by authors named "Glenda Guek Khim Oh"

Ala is a central metabolite in leaf cells whose abundance is related to pyruvate (Pyr) metabolism and nocturnal respiration rates. Exposure of Arabidopsis (Arabidopsis thaliana) leaf disks to certain exogenous amino acids including Ala led to substantial increases in nighttime respiration rates as well as increases in alternative oxidase (AOX) 1d transcript and protein levels. During Ala treatment, AOX1d accumulation, but not AOX1a accumulation, was dependent upon the catabolism of Ala.

View Article and Find Full Text PDF

Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform.

View Article and Find Full Text PDF

Respiratory rate measurements are crucial assays to understand mitochondrial biochemistry as well as metabolic regulation within tissues. Several technologies currently exist that can measure plant respiratory oxygen consumption or carbon dioxide evolution rates over short durations by either isolated mitochondria or plant tissues. Here we describe recently developed alternative methods for measuring tissue oxygen consumption rates (OCRs) using systems reliant on oxygen sensitive fluorophores.

View Article and Find Full Text PDF

Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O consumption rate (R) in mature leaves of Arabidopsis ().

View Article and Find Full Text PDF

Blau syndrome (BS) is a very rare autosomal dominant juvenile inflammatory disorder caused by mutation in nucleotide-binding oligomerization domain containing 2 . Usually, dermatitis is the first symptom that appears in the 1 year of life. About 220 BS cases with confirmed mutation have been reported.

View Article and Find Full Text PDF