J Environ Manage
November 2024
Protected areas such as national parks constitute an increasing land mass globally, but these areas are under increasing threat from climate change events such as drought, flooding, and bushfires. The recent Yosemite National Park fires in California provide an example of this issue. After any such disaster, authorities will need to restore those protected areas to their former state at significant costs within any public funding cycle.
View Article and Find Full Text PDFEconomic value from protected areas informs decisions for biodiversity conservation and visitor benefits. Calculating these benefits assists governments to allocate limited budget resources. This study estimated tourism ecosystem service expenditure values for a regional protected area network in South Australia (57 parks) using direct transactional data, travel costs and economic multipliers.
View Article and Find Full Text PDFInterleukin-36 gamma (IL-36G) is a member of the IL-36 subfamily of cytokines and acts as a potent driver of inflammation. IL-36G has been extensively characterized in the pathogenesis of psoriasis and has been recently described to play roles in wound healing particularly in the gastrointestinal tract. However, the effects of IL-36G during cancer development including gastric cancer remain unexplored.
View Article and Find Full Text PDFIL-36 cytokines are critical regulators of mucosal inflammation and homeostasis. IL-36γ regulates the expression of inflammatory cytokines and antimicrobial proteins by gingival epithelial cells (e.g.
View Article and Find Full Text PDFInterleukin-36 (IL-36) cytokines are important regulators of mucosal homeostasis and inflammation. We have previously established that oral epithelial cells upregulate IL-36γ expression in response to the bacterial pathogen Here, we have established that IL-36γ can stimulate the gene expression of mechanistically distinct antimicrobial proteins, including the peptidoglycan amidase PGLYRP2, in oral epithelial cells (e.g.
View Article and Find Full Text PDFPorphyromonas gingivalis is a keystone pathogen in chronic periodontitis. Its expression of gingipain proteases (Kgp and RgpA/B) is central to the stimulation of chronic inflammation. In this study, we investigated the inflammatory response of oral epithelial cells to P.
View Article and Find Full Text PDFInterleukin (IL)-36 cytokines are important regulators of mucosal homeostasis and inflammation. We previously established that oral epithelial cells strongly upregulate IL-36γ expression in response to the bacterial pathogen Porphyromonas gingivalis. Here, we have established that IL-36γ stimulates the expression of the IL-12 cytokine family members, IL-23p19 and Epstein-Barr Virus-Induced Gene 3 (EBI3), by oral epithelial cells; their expression was also selectively stimulated by IL-36α.
View Article and Find Full Text PDFWe recently demonstrated that the expression of the interferon regulatory factor 6 (IRF6) transcription factor in oral keratinocytes was stimulated by the periodontal pathogen Here, we have established that IRF6 promotes the differentiation of oral keratinocytes in response to This was evidenced by the IRF6-dependent upregulation of specific markers of keratinocyte terminal differentiation (e.g., involucrin [IVL] and keratin 13 [KRT13]), together with additional transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 (GRHL3) and Ovo-like zinc finger 1 (OVOL1).
View Article and Find Full Text PDFKeratinocytes are central to the barrier functions of surface epithelia, such as the gingiva and epidermis. RIPK4 is a key regulator of keratinocyte differentiation; however, the signalling pathways in which it functions remain poorly defined. In this study, we identified a regulatory relationship between RIPK4 and ELF3, an ETS family transcription factor.
View Article and Find Full Text PDFIn addition to their established roles in host defence, Toll-like Receptors (TLRs) have emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing receptor, TLR3, has been particularly implicated in such processes in several different tissues including the skin, intestine and liver, as well as in the control of reparative mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In this review, we provide an overview of TLR3 signalling and functions in inflammation, tissue damage and repair processes, as well as therapeutic opportunities that may arise in the future from knowledge of such pathways.
View Article and Find Full Text PDFKeratinocytes of the oral mucosa and epidermis play key roles in host defense. In addition to functioning as a physical barrier, they also produce cytokines to elicit inflammation in response to infection or injury. We recently established that receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) function as a cell-intrinsic signaling axis to regulate keratinocyte differentiation.
View Article and Find Full Text PDFIFN regulatory factors (IRFs) help to shape the immune response to pathogens by imparting signaling specificity to individual TLRs. We recently demonstrated that IRF6 provides specificity to TLR2 signaling in oral epithelial cells. TLR2 plays an important role in eliciting inflammation to Porphyromonas gingivalis, a keystone pathogen in periodontitis.
View Article and Find Full Text PDFInterferon regulatory factor (IRF) family members impart cell-type specificity to toll-like receptor (TLR) signalling, and we recently identified a role for IRF6 in TLR2 signalling in epithelial cells. TLR3 has a well-characterized role in wound healing in the skin, and here, we examined TLR3-dependent IRF6 functions in human keratinocytes. Primary keratinocytes responded robustly to the TLR3 agonist poly(IC) with upregulation of mRNAs for interferon-β (IFN-β), the interleukin-12 (IL-12) family member IL-23p19 and the chemokines IL-8 and chemokine (C-C motif) ligand 5 (CCL5).
View Article and Find Full Text PDFIRF6 and RIPK4 are critical regulators of keratinocyte differentiation and their mutation cause the developmental syndromes Van der Woude syndrome (VWS) and Bartsocas-Papas syndrome (BPS), respectively. RIPK4 promotes keratinocyte differentiation, in part, by inducing IRF6 transactivator function through the phosphorylation of its C-terminal domain at Ser413 and Ser424. Although more than 200 IRF6 mutations have been identified in VWS, a p.
View Article and Find Full Text PDFReceptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) are critical regulators of keratinocyte differentiation, and their mutation causes the related developmental epidermal disorders Bartsocas-Papas syndrome and popliteal pterygium syndrome, respectively. However, the signaling pathways in which RIPK4 and IRF6 operate to regulate keratinocyte differentiation are poorly defined. Here we identify and mechanistically define a direct functional relationship between RIPK4 and IRF6.
View Article and Find Full Text PDFEpidermal and mucosal epithelial cells are integral to host defense. They not only act as a physical barrier but also utilize pattern recognition receptors, such as the Toll-like receptors (TLRs), to detect and respond to pathogens. Members of the interferon regulatory factor (IRF) family of transcription factors are key components of TLR signaling as they impart specificity to downstream responses.
View Article and Find Full Text PDFIn chronic inflammatory lesions there are increased numbers of macrophages with a possible contribution of enhanced survival/proliferation due, for example, to cytokine action; such lesions are often hypoxic. Prior studies have found that culture in low oxygen can promote monocyte/macrophage survival. We show here, using pharmacologic inhibitors, that the hypoxia-induced pro-survival response of macrophages exhibits a dependence on PI3-kinase and mTOR activities but surprisingly is suppressed by Akt and p38 MAPK activities.
View Article and Find Full Text PDFColony stimulating factor-1 (CSF-1) mediates its pleiotropic effects on macrophages through the CSF-1 receptor (CSF-1R), a receptor tyrosine kinase. Current models of CSF-1 signalling imply that the CSF-1R activates signalling pathways exclusively at the plasma membrane and the subsequent internalisation of the CSF-1R simply facilitates its lysosomal degradation in order to prevent on-going signalling. Here, we sought to establish if the CSF-1R may in fact continue to signal following its internalisation.
View Article and Find Full Text PDFGM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF.
View Article and Find Full Text PDFThe TLR family of pattern recognition receptors is largely responsible for meditating the activation of macrophages by pathogens. Because macrophages may encounter multiple TLR ligands during an infection, signaling crosstalk between TLR pathways is likely to be important for the tailoring of inflammatory reactions to pathogens. Here, we show that rather than inducing tolerance, LPS pretreatment primed the inflammatory response (e.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2009
Objective: Oxidized low-density lipoprotein (oxLDL) induces survival of colony stimulating factor-1 (CSF-1)-dependent macrophages in vitro. Because atherosclerotic lesion-associated macrophages take up large amounts of glucose, we investigated whether, and how, oxLDL promotes glucose uptake and how glucose metabolism regulates oxLDL-induced macrophage survival.
Methods And Results: OxLDL-induced macrophage survival required glucose metabolism.
In chronic inflammatory lesions macrophages are abundant and adapt to the low oxygen concentrations often present there. In low oxygen some cell types die by apoptosis, as reported for macrophage cell lines, while others survive better as they shift their metabolism to anaerobic glycolysis. It was found here that hypoxia prolongs the survival of murine bone marrow-derived macrophages, either in the absence or presence of low CSF-1 (M-CSF) concentrations.
View Article and Find Full Text PDFColony stimulating factor-1 (CSF-1)-dependent macrophages play crucial roles in the development and progression of several pathological conditions including atherosclerosis and breast cancer metastasis. Macrophages in both of these pathologies take up increased amounts of glucose. Since we had previously shown that CSF-1 stimulates glucose uptake by macrophages, we have now investigated whether glucose metabolism is required for the survival of CSF-1-dependent macrophages as well as examined the mechanism by which CSF-1 stimulates glucose uptake.
View Article and Find Full Text PDFUptake by macrophages forms an important part of the mode of action of particulate adjuvants such as oil-in-water emulsions and alum. We have found previously that such adjuvants promote macrophage survival and suggested that this response may contribute to their efficacy. To explore this adjuvant activity further, we have investigated whether oil-in-water emulsion stimulates glucose uptake in macrophages and whether such uptake is relevant to the promotion of survival.
View Article and Find Full Text PDFMacrophages are important mediators of the immune response to infection by virtue of their ability to secrete cytokines that trigger inflammation. Toll-like receptors (TLRs) are largely responsible for meditating the activation of macrophages by pathogens. IRAK-1 is a proximal protein kinase in TLR signalling pathways and hence its activation must be tightly regulated.
View Article and Find Full Text PDF