Three-dimensional (3D) cell models that mimic the structure and function of native tissues are enabling more detailed study of physiological and pathological mechanisms in vitro. We have previously demonstrated the ability to build and manipulate 3D multicellular microscopic structures using holographic optical tweezers (HOTs). Here, we show the construction of a precisely patterned 3D microenvironment and biochemical gradient model consisting of mouse embryoid bodies (mEBs) and polymer microparticles loaded with retinoic acid (RA), embedded in a hydrogel.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2018
Hydrogel scaffolds derived from the extracellular matrix (ECM) of mammalian tissues have been successfully used to promote tissue repair in vitro and in vivo. The objective of this study was to evaluate the osteogenic potential of ECM hydrogels prepared from demineralized and decellularized bovine bone in the presence and absence of osteogenic medium. Culture of C2C12 and mouse primary calvarial cells (mPCs) on decellularized bone ECM (bECM) and demineralized bone matrix (DBM) gels resulted in increased expression of osteogenic gene markers, including a 3.
View Article and Find Full Text PDFThe accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures.
View Article and Find Full Text PDFThere are well-established approaches for osteogenic differentiation of embryonic stem cells (ESCs), but few show direct comparison with primary osteoblasts or demonstrate differences in response to external factors. Here, we show comparative analysis of in vitro osteogenic differentiation of mouse ESC (osteo-mESC) and mouse primary osteoblasts. Both cell types formed mineralized bone nodules and produced osteogenic extracellular matrix, based on immunostaining for osteopontin and osteocalcin.
View Article and Find Full Text PDFThe early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models.
View Article and Find Full Text PDFBackground: To investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs).
View Article and Find Full Text PDFIEEE Trans Nanobioscience
March 2010
Magnetic particle tagging techniques are currently being applied to tissue engineering applications such as controlled differentiation of mesenchymal stem cells (MSC). In order to define key mechanotransducers underpinning these applications, the electrophysiological responses of human MSCs (hMSC) have been investigated. Ferromagnetic microparticles were coated with L-arginyl-glycyl-L-aspartic acid in order to target the application of dynamic force (6 pN) directly to cell surface integrins.
View Article and Find Full Text PDF