CYP1A1 is thought to mediate carcinogenesis in oral, lung and epithelial cancers. In order to identify a CYP1A1 inhibitor from an edible plant, 394 natural products in the IIIM's natural product repository were screened, at 10 μM concentration, using CYP1A1-Sacchrosomes™ ( microsomal enzyme isolated from recombinant baker's yeast). Twenty-seven natural products were identified that inhibited 40-97% of CYP1A1's 7-ethoxyresorufin--deethylase activity.
View Article and Find Full Text PDFThe overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes™ and live human HEK293 cells.
View Article and Find Full Text PDFTarget structure-guided virtual screening (VS) is a versatile, powerful, and inexpensive alternative to experimental high-throughput screening (HTS). To discover potent CYP1A1 enzyme inhibitors for cancer chemoprevention, a commercial library of 50 000 small molecules was utilized for VS guided by both ligand and structure-based strategies. For experimental validation, 300 ligands were proposed based on combined analysis of fitness scores from ligand based e-pharmacophore screening and docking score, prime MMGB/SA binding affinity and interaction pattern analysis from structure-based VS.
View Article and Find Full Text PDFCYP1B1 is implicated to have a role in the development of breast, ovarian, renal, skin and lung carcinomas. It has been suggested that identification of potent and specific CYP1B1 inhibitors can lead to a novel treatment of cancer. Flavonoids have a compact rigid skeleton which fit precisely within the binding cavity of CYP1B1.
View Article and Find Full Text PDFThe structure of alpha-napthoflavone (ANF), a potent inhibitor of CYP1A1 and CYP1B1, mimics the structure of chalcones. Two potent CYP1B1 inhibitors 7k (DMU2105) and 6j (DMU2139) have been identified from two series of synthetic pyridylchalcones. They inhibit human CYP1B1 enzyme bound to yeast-derived microsomes (Sacchrosomes™) with IC values of 10 and 9 nM, respectively, and show a very high level of selectivity towards CYP1B1 with respect to the IC values obtained with CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2C9 and CYP2C19 Sacchrosomes™.
View Article and Find Full Text PDFHighly selective CYP1B1 inhibitors have potential in the treatment of hormone-induced breast and prostate cancers. Mimicry of potent and selective CYP1B1 inhibitors, α-naphthoflavone and stilbenes, revealed that two sets of hydrophobic clusters suitably linked via a polar linker could be implanted into a new scaffold 'biphenyl ureas' to create potentially a new class of CYP1B1 inhibitors. A series of sixteen biphenyl ureas were synthesized and screened for CYP1B1 and CYP1A1 inhibition in Sacchrosomes™, yeast-derived recombinant microsomal enzymes.
View Article and Find Full Text PDF