Publications by authors named "Glen E Liston"

For non-hibernating species within temperate climates, survival during severe winter weather often depends on individuals' behavioral response and available refugia. Identifying refugia habitat that sustains populations during adverse winter conditions can be difficult and complex. This study provides an example of how modeled, biologically relevant snow and weather information can help identify important relationships between habitat selection and dynamic winter landscapes using greater sage-grouse (Centrocercus urophasianus, hereafter "sage-grouse") as a model species.

View Article and Find Full Text PDF

Global monitoring of seasonal snow water equivalent (SWE) has advanced significantly over the past decades. However, challenges remain when estimating SWE from passive and active microwave signatures, because a priori characterization of snow properties is required for SWE retrievals. Numerical experiments have shown that utilizing physical snow models to acquire snowpack characterization can potentially improve microwave-based SWE retrievals.

View Article and Find Full Text PDF

Background: Caribou and reindeer across the Arctic spend more than two thirds of their lives moving in snow. Yet snow-specific mechanisms driving their winter ecology and potentially influencing herd health and movement patterns are not well known. Integrative research coupling snow and wildlife sciences using observations, models, and wildlife tracking technologies can help fill this knowledge void.

View Article and Find Full Text PDF

Arctic and boreal environments are changing rapidly, which could decouple behavioral and demographic traits of animals from the resource pulses that have shaped their evolution. Dall's sheep (Ovis dalli dalli) in northwestern regions of the USA and Canada, survive long, severe winters and reproduce during summers with short growing seasons. We sought to understand the vulnerability of Dall's sheep to a changing climate in Lake Clark National Park and Preserve, Alaska, USA.

View Article and Find Full Text PDF

Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects.

View Article and Find Full Text PDF

Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die-offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual-based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth.

View Article and Find Full Text PDF

A Lagrangian snow-evolution model (SnowModel-LG) was used to produce daily, pan-Arctic, snow-on-sea-ice, snow property distributions on a 25 × 25-km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective-Analysis for Research and Applications-Version 2 (MERRA-2) and European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis-5th Generation (ERA5) atmospheric reanalyses, and National Snow and Ice Data Center (NSIDC) sea ice parcel concentration and trajectory data sets (approximately 61,000, 14 × 14-km parcels). The simulations performed full surface and internal energy and mass balances within a multilayer snowpack evolution system.

View Article and Find Full Text PDF

A large retreat of sea-ice in the 'stormy' Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem.

View Article and Find Full Text PDF

Winters are limiting for many terrestrial animals due to energy deficits brought on by resource scarcity and the increased metabolic costs of thermoregulation and traveling through snow. A better understanding of how animals respond to snow conditions is needed to predict the impacts of climate change on wildlife. We compared the performance of remotely sensed and modeled snow products as predictors of winter movements at multiple spatial and temporal scales using a data set of 20,544 locations from 30 GPS-collared Dall sheep (Ovis dalli dalli) in Lake Clark National Park and Preserve, Alaska, USA from 2005 to 2008.

View Article and Find Full Text PDF

This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input.

View Article and Find Full Text PDF