PUFAs are known to regulate cholesterol synthesis and cellular uptake by multiple mechanisms that do not involve SFAs. Polymorphisms in any of the numerous proteins involved in cholesterol homeostasis, as a result of genetic variation, could lead to higher or lower serum cholesterol. PUFAs are susceptible to lipid peroxidation, which can lead to oxidative stress, inflammation, atherosclerosis, cancer, and disorders associated with inflammation, such as insulin resistance, arthritis, and numerous inflammatory syndromes.
View Article and Find Full Text PDFThe measurement of α-dicarbonyls and other degradation products of sugars has become important in view of their toxicity. Although there are several methods used for their analysis, most require long reaction times to form UV absorbing or fluorescent derivatives and the nonpolar nature of commonly used derivatives necessitates relatively high concentrations of organic solvents for elution in reverse phase liquid chromatography. The present method describes the use of Girard-T reagent in a simple, one step derivatization of α-dicarbonyls and conjugated aldehydes and analysis using ion-pair reverse phase liquid chromatography.
View Article and Find Full Text PDFAlthough early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health.
View Article and Find Full Text PDFAlthough the oxidative destruction of glucose and fructose has been studied by several investigators over the past century, the mechanism by which phosphate promotes these oxidation reactions is not known. A wide range of oxidation products have been used to monitor the oxidation of sugars and free radicals have been shown to be involved. The influence of phosphate concentration on the rate of production of free radicals and several sugar oxidation products has been studied.
View Article and Find Full Text PDF