Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence.
View Article and Find Full Text PDFMicroRNA (miRNA)-mediated regulation is widespread, relatively mild but functionally important. It remains challenging to unequivocally identify miRNA targeted RNAs at a genomic scale and determine how changes in miRNA levels affect the transcriptome. Here, we captured individual miRNAs and their targeted RNA sites in wild-type, miR-200 family knockout and induced epithelial cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis.
View Article and Find Full Text PDFPARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells.
View Article and Find Full Text PDFAlthough treatment options for localized prostate cancer (CaP) are initially effective, the five-year survival for metastatic CaP is below 30%. Mutation or deletion of the PTEN tumor suppressor is a frequent event in metastatic CaP, and inactivation of the transforming growth factor (TGF) ß signaling pathway is associated with more advanced disease. We previously demonstrated that mouse models of CaP based on inactivation of Pten and the TGFß type II receptor (Tgfbr2) rapidly become invasive and metastatic.
View Article and Find Full Text PDFThe microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets.
View Article and Find Full Text PDFRecent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice.
View Article and Find Full Text PDFThe Kruppel-like factor Klf4 is implicated in tumorigenesis and maintaining stem cell pluripotency, and Klf4 can both activate and repress gene expression. We show that the Pbx1 and Meis2 homeodomain proteins interact with Klf4 and can be recruited to DNA elements comprising a Klf4 site or GC box, with adjacent Meis and Pbx sites. Meis2d and Pbx1a activate expression of p15(Ink4a) and E-cadherin, dependent on the Meis2d transcriptional activation domain.
View Article and Find Full Text PDFMyeloid ecotropic insertion site (Meis)2 is a homeodomain protein containing a conserved homothorax (Hth) domain that is present in all Meis and Prep family proteins and in the Drosophila Hth protein. The Hth domain mediates interaction with Pbx homeodomain proteins, allowing for efficient DNA binding. Here we show that, like Meis1, Meis2 has a strong C-terminal transcriptional activation domain, which is required for full activation of transcription by homeodomain protein complexes composed of Meis2 and Pbx1.
View Article and Find Full Text PDFTG-interacting factor (Tgif1) represses gene expression by interaction with general corepressors, and can be recruited to target genes by transforming growth factor beta (TGFβ) activated Smads, or by the retinoid X receptor (RXR). Here we show that Tgif1 interacts with the LXRα nuclear receptor and can repress transcription from a synthetic reporter activated by LXRα. In cultured cells reducing endogenous Tgif1 levels resulted in increased expression of LXRα target genes.
View Article and Find Full Text PDFActivation of the p53 pathway mediates cellular responses to diverse forms of stress. Here we report that the p53 target gene p21(CIP1) is regulated by stress at post-initiation steps through conversion of paused RNA polymerase II (RNAP II) into an elongating form. High-resolution chromatin immunoprecipitation assays (ChIP) demonstrate that p53-dependent activation of p21(CIP1) transcription after DNA damage occurs concomitantly with changes in RNAP II phosphorylation status and recruitment of the elongation factors DSIF (DRB Sensitivity-Inducing Factor), P-TEFb (Positive Transcription Elongation Factor b), TFIIH, TFIIF, and FACT (Facilitates Chromatin Transcription) to distinct regions of the p21(CIP1) locus.
View Article and Find Full Text PDF