The apolipoprotein E (ApoE) gene is a genetic risk factor for late-onset Alzheimer's disease, in which ε4 allele carriers have increased risk compared to the common ε3 carriers. Cadmium (Cd) is a toxic heavy metal and a potential neurotoxicant. We previously reported a gene-environment interaction (GxE) effect between ApoE4 and Cd that accelerates or increases the severity of the cognitive decline in ApoE4-knockin (ApoE4-KI) mice exposed to 0.
View Article and Find Full Text PDFCadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal and an environmental pollutant. However, the full spectrum of its neurotoxicity and the underlying mechanisms are not completely understood. Our previous studies demonstrated that Cd exposure impairs adult hippocampal neurogenesis and hippocampus-dependent memory in mice.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal of great public health concern. Recent studies suggested a link between Cd exposure and cognitive decline in humans. The ε4 allele, compared with the common ε3 allele, of the human apolipoprotein E gene (ApoE) is associated with accelerated cognitive decline and increased risks for Alzheimer's disease (AD).
View Article and Find Full Text PDFCadmium (Cd) is an environmental pollutant of considerable interest throughout the world and potentially a neurotoxicant. Our recent data indicate that Cd exposure induces impairment of hippocampus-dependent learning and memory in mice. However, the underlying mechanisms for this defect are not known.
View Article and Find Full Text PDFCadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction.
View Article and Find Full Text PDFAlthough there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal's susceptibility to depression after chronic unpredictable stress treatment.
View Article and Find Full Text PDFRecent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined.
View Article and Find Full Text PDFRecent studies have shown that inhibition of adult neurogenesis impairs the formation of hippocampus-dependent memory. However, it is not known whether increasing adult neurogenesis affects the persistence of hippocampus-dependent long-term memory. Furthermore, signaling mechanisms that regulate adult neurogenesis are not fully defined.
View Article and Find Full Text PDFRecent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain.
View Article and Find Full Text PDFProlactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain.
View Article and Find Full Text PDFRecent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is selectively expressed in the neurogenic regions of the adult mouse brain.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
May 2010
Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease. Epidemiological studies have linked pesticide exposure to increased risk for sporadic Parkinson disease. Here, we investigated the role of c-Jun-N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat.
View Article and Find Full Text PDFThe commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors.
View Article and Find Full Text PDFMultipotent cortical progenitor cells differentiate into neurons and glial cells during development; however, mechanisms governing the specification of progenitors to a neuronal fate are not well understood. Although both extrinsic and intrinsic factors regulate this process, little is known about kinase signaling mechanisms that direct neuronal fate. Here, we report that extracellular signal-regulated kinase (ERK) 5 is expressed and active in proliferating cortical progenitors.
View Article and Find Full Text PDF