Publications by authors named "Glen A Farr"

A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 μM relative to IC50 values of 28 to 73 μM in HPV-negative cell lines.

View Article and Find Full Text PDF

Oral agents targeting Janus-associated kinases (JAKs) are promising new agents in clinical development. To better understand the relationship between JAK inhibition and biological outcome, compounds targeting JAKs were evaluated in peripheral human whole blood. To date, these analyses are low throughput and costly.

View Article and Find Full Text PDF

Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway.

View Article and Find Full Text PDF

In order to understand the mechanisms through which apical and basolateral membrane proteins achieve their subcellular distributions in polarized epithelial cells, it is critical to develop techniques that permit the selective observation of newly synthesized populations of these proteins. The SNAP tag system permits the detection and visualization of distinct spatially and temporally defined cohorts of tagged proteins. Thus, this technique is especially well suited to studying the trafficking routes pursued by newly synthesized proteins.

View Article and Find Full Text PDF

The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein.

View Article and Find Full Text PDF

Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation.

View Article and Find Full Text PDF

Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse-chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase.

View Article and Find Full Text PDF

Cylindrical projections surrounding the fivefold-symmetry axes in minute virus of mice (MVM) harbor central pores that penetrate through the virion shell. In newly released DNA-containing particles, these pores contain residues 28 to 38 belonging to a single copy of VP2, disposed so that its extreme N-terminal domain projects outside the particle. Virions are metastable, initially sequestering internally the N termini of all copies of the minor capsid protein, VP1, that is essential for entry.

View Article and Find Full Text PDF

Enveloped viruses deliver their virions into the host cell by fusion with the cellular plasma or endosomal membrane, thus creating topological continuity between the cytosol and the inside of the viral envelope. Nonenveloped viruses are, by their very nature, denied this strategy and must employ alternative methods to breach their host cell's delimiting membrane. We show here that the compact icosahedral parvoviral virion gains entry by deploying a lipolytic enzyme, phospholipase A(2) (PLA(2)), that is expressed at the N terminus of VP1, the minor coat protein.

View Article and Find Full Text PDF

The atomic structure of the DNA-containing T = 1 particle of the parvovirus minute virus of mice (MVM) reveals cylindrical projections at each fivefold symmetry axis, each containing an 8 Angstrom pore through which runs 10 amino acids of a single VP2 N-terminus. The tightest constriction of this pore is formed at its inner end by the juxtaposition of leucine side chains from position 172 of five independent VP2 molecules. To test whether L172 modulates the extrusion of VP N-termini, we constructed and analyzed a complete set of amino acid substitution mutants at this highly conserved residue.

View Article and Find Full Text PDF