Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism.
View Article and Find Full Text PDFThis paper presents a simple physics-based model for the interpretation of key metrics in laser direct drive. The only input parameters required are target scale, in-flight aspect ratio, and beam-to-target radius, and the importance of each has been quantified with a tailored set of cryogenic implosion experiments. These analyses lead to compact and accurate predictions of the fusion yield and areal density as a function of hydrodynamic stability, and they suggest new ways to take advantage of direct drive.
View Article and Find Full Text PDFNeutron time-of-flight (nTOF) spectrometers are essential instruments for measuring and evaluating the performance of inertial confinement fusion implosions. The neutron spectrometers utilized for the OMEGA laser include two liquid-based scintillators, each consisting of a large volume filled with xylene that is coupled to four photomultiplier tubes. Analysis of the signal from these detectors requires detailed knowledge of the scintillator's light output, which is needed to fit the nTOF spectrum, from which the neutron energy spectrum is informed.
View Article and Find Full Text PDFWe show that an x-ray emission signature associated with acceleration phase mass injection [R. C. Shah et al.
View Article and Find Full Text PDFShock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
The National Diagnostic Working Group (NDWG) has led the effort to fully exploit the major inertial confinement fusion/high-energy density facilities in the US with the best available diagnostics. These diagnostics provide key data used to falsify early theories for ignition and suggest new theories, recently leading to an experiment that exceeds the Lawson condition required for ignition. The factors contributing to the success of the NDWG, collaboration and scope evolution, and the methods of accomplishment of the NDWG are discussed in this Review.
View Article and Find Full Text PDFNeutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision.
View Article and Find Full Text PDFThe ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production.
View Article and Find Full Text PDFIn direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability was controlled by changing the shell adiabat from (α_{F}≃5) (more stable) to (α_{F}≃3.
View Article and Find Full Text PDFAreal density is one of the key parameters that determines the confinement time in inertial confinement fusion experiments, and low-mode asymmetries in the compressed fuel are detrimental to the implosion performance. The energy spectra from the scattering of the primary deuterium-tritium (DT) neutrons off the compressed cold fuel assembly are used to investigate low-mode nonuniformities in direct-drive cryogenic DT implosions at the Omega Laser Facility. For spherically symmetric implosions, the shape of the energy spectrum is primarily determined by the elastic and inelastic scattering cross sections for both neutron-deuterium and neutron-tritium kinematic interactions.
View Article and Find Full Text PDFA new neutron time-of-flight (nTOF) detector for deuterium-deuterium (DD)-fusion yield and ion-temperature measurements was designed, installed, and calibrated for the OMEGA Laser Facility. This detector provides an additional line of sight for DD neutron yield and ion-temperature measurements for yields exceeding 1 × 10 with higher precision than existing detectors. The nTOF detector consists of a 90-mm-diam, 20-mm-thick BC-422 scintillator and a gated Photek photomultiplier tube (PMT240).
View Article and Find Full Text PDFIn laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration.
View Article and Find Full Text PDFThe apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression.
View Article and Find Full Text PDFThis Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
May 2022
A new pseudopolymorph of berberine, 9,10-dimeth-oxy-5,6-di-hydro-2-7λ-[1,3]dioxolo[4,5-]iso-quinolino-[3,2-]isoquinolin-7-ylium chloride methanol monosolvate, CHNO ·Cl·CHOH, was obtained during co-crystallization of berberine chloride with malonic acid from methanol. The berberine cations form dimers, which are further packed in stacks. The title structure was compared with other reported solvates of berberine chloride: its dihydrate, tetra-hydrate, and ethanol solvate hemihydrate.
View Article and Find Full Text PDFA series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.
View Article and Find Full Text PDFA new tri-particle mono-energetic backlighter based on laser-driven implosions of DTHe gas-filled capsules has been implemented at the OMEGA laser. This platform, an extension of the original DHe backlighter platform, generates 9.5 MeV deuterons from the THe reaction in addition to 14.
View Article and Find Full Text PDFMono-energetic proton radiography is a vital diagnostic for numerous high-energy-density-physics, inertial-confinement-fusion, and laboratory-astrophysics experiments at OMEGA. With a large number of campaigns executing hundreds of shots, general trends in DHe backlighter performance are statistically observed. Each experimental configuration uses a different number of beams and drive symmetry, causing the backlighter to perform differently.
View Article and Find Full Text PDFNeutron time-of-flight (nTOF) detectors are used to diagnose the conditions present in inertial confinement fusion (ICF) experiments and basic laboratory physics experiments performed on an ICF platform. The instrument response function (IRF) of these detectors is constructed by convolution of two components: an x-ray IRF and a neutron interaction response. The shape of the neutron interaction response varies with incident neutron energy, changing the shape of the total IRF.
View Article and Find Full Text PDFThree-dimensional reconstruction algorithms have been developed, which determine the hot-spot velocity, hot-spot apparent ion temperature distribution, and fuel areal-density distribution present in laser-direct-drive inertial confinement fusion implosions on the OMEGA laser. These reconstructions rely on multiple independent measurements of the neutron energy spectrum emitted from the fusing plasma. Measurements of the neutron energy spectrum on OMEGA are made using a suite of quasi-orthogonal neutron time-of-flight detectors and a magnetic recoil spectrometer.
View Article and Find Full Text PDFMillimeter-sized CD foils fielded close (order mm) to inertial confinement fusion (ICF) implosions have been proposed as a game-changer for improving energy resolution and allowing time-resolution in neutron spectrum measurements using the magnetic recoil technique. This paper presents results from initial experiments testing this concept for direct drive ICF at the OMEGA Laser Facility. While the foils are shown to produce reasonable signals, inferred spectral broadening is seen to be high (∼5 keV) and signal levels are low (by ∼20%) compared to expectation.
View Article and Find Full Text PDFA traditional neutron time-of-flight (nTOF) detector used in inertial confinement fusion consists of a scintillator coupled with a photomultiplier tube (PMT). The instrument response function (IRF) of such a detector is dominated by the scintillator-light decay. In DT implosions with neutron yield larger than 10, a novel detector consisting of a microchannel-plate (MCP) photomultiplier tube in a housing without a scintillator (PMT nTOF) can be used to measure DT yield, ion temperature, and neutron velocity.
View Article and Find Full Text PDFHigh-energy-density (HED) experiments in convergent geometry are able to test physical models at pressures beyond hundreds of millions of atmospheres. The measurements from these experiments are generally highly integrated and require unique analysis techniques to procure quantitative information. This work describes a methodology to constrain the physics in convergent HED experiments by adapting the methods common to many other fields of physics.
View Article and Find Full Text PDF