We demonstrate that 3-mm-thick, periodically poled enables energy scaling of a nonresonant optical parametric oscillator operated in the narrowband mode with a volume Bragg grating at the signal wavelength. Utilizing the full available pump power at 1064 nm, we obtained maximum average powers of 2.25 and 2.
View Article and Find Full Text PDFWe present a tunable (6.62-11.34 µm), singly-resonant, cascade optical parametric oscillator with intracavity pumping of BaGaGeSe in the second stage and spectral narrowing realized by a Volume Bragg Grating acting on the signal wave of the first stage which serves as a pump for the second stage.
View Article and Find Full Text PDFChirped Bragg volume gratings (CBGs) offer a useful alternative for spectral analysis, but increasing the bandwidth necessitates increasing the device area. In contrast, recently developed rotated CBGs (r-CBGs), in which the Bragg structure is rotated by 45° with respect to the device facets, require increasing only the device length to extend the bandwidth, in addition to the convenience of resolving the spectrum at normal incidence. Here, we multiplex r-CBGs in the same device to enable spectral analysis in two independent spectral windows without increasing the system volume.
View Article and Find Full Text PDFSpace-time wave packets (STWPs) are pulsed fields in which a strictly prescribed association between the spatial and temporal frequencies yields surprising and useful behavior. However, STWPs to date have been synthesized using bulky free-space optical systems that require precise alignment. We describe a compact system that makes use of a novel optical component: a chirped volume Bragg grating that is rotated by 45° with respect to the plane-parallel device facets.
View Article and Find Full Text PDFWe introduce a new, to the best of our knowledge, optical component-a rotated chirped volume Bragg grating (r-CBG)-that spatially resolves the spectrum of a normally incident light beam in a compact footprint and without the need for subsequent free-space propagation or collimation. Unlike conventional chirped volume Bragg gratings in which both the length and width of the device must be increased to increase the bandwidth, by rotating the Bragg structure we sever the link between the length and width of a r-CBG, leading to a significantly reduced device footprint for the same bandwidth. We fabricate and characterize such a device in multiple spectral windows, we study its spectral resolution, and confirm that a pair of cascaded r-CBGs can resolve and then recombine the spectrum.
View Article and Find Full Text PDFConventional head-up displays (HUDs) suffer from a limited exit pupil and a lack of compactness mainly due to the use of bulky optics. HUDs need a high-quality image with a large field of view (FOV) in small packaging to gain commercial acceptability. Holographic HUDs are phase-only devices that allow vision correction and focus adjustment while having a wide FOV.
View Article and Find Full Text PDFPast beam-shaping techniques, developed to transform a Gaussian beam into other waveforms, rely on a wide selection of available tools ranging from physical apertures, diffractive optical elements, phase masks, free-form optics to spatial light modulators. However, these devices - whether active or passive - do not address the underlying monochromatic nature of their embedded phase profiles, while being hampered by the complex, high-cost manufacturing process and a restrictive laser-induced damage threshold. Recently, a new type of passive phase devices for beam transformation - referred to as holographic phase masks (HPMs), was developed to address these critical shortcomings.
View Article and Find Full Text PDFWe report on the characterization of a high-power, chirped volume Bragg grating (CVBG) pulse compressor. It includes measurements of the CVBG's diffraction efficiency, beam profile, beam quality ( parameter), pulse spectrum, the CVBG's temperature, and the thermal lens. These parameters were monitored for a wide range of input laser powers and with different clamping forces applied on the CVBG.
View Article and Find Full Text PDFThe paper presents an overview of the benefits of recording phase masks into the bulk of photo-thermo-refractive glass. We demonstrate that both binary and gray-scale phase masks can be encoded into the medium, and that such masks can be used for mode conversion and beam shaping with near-theoretical efficiency. We further demonstrate that by encoding the phase mask profile into a transmitting volume Bragg grating, it is possible to create tunable and achromatic phase masks without requiring a complex phase pattern.
View Article and Find Full Text PDFWhile conventional complex phase masks are chromatic, we present an achromatic holographic phase mask capable of performing optical beam transformations in a spectral range exceeding 1000 nm. The system consists of a holographic phase mask fabricated by encoding the desired phase profiles into volume Bragg gratings, inserted in between two surface gratings. This device automatically adjusts each spectral component diffracted by the surface grating to the Bragg angle of the volume Bragg grating and equalizes phase incursion for all diffracted wavelengths.
View Article and Find Full Text PDFA novel dual channel Tm:YLF laser system was developed where two degenerate laser cavities were coupled by spectrally beam combining their emission and by implementing a common output coupler. Under continuous wave running conditions, each channel's slope efficiency was greater than 45% and the maximum combined output power was 11 W. Passive Q-switching was achieved using an 80%, Cr:ZnSe saturable absorber.
View Article and Find Full Text PDFA novel photothermal process to spatially modulate the concentration of sub-wavelength, high-index nanocrystals in a multicomponent Ge-As-Pb-Se chalcogenide glass thin film resulting in an optically functional infrared grating is demonstrated. The process results in the formation of an optical nanocomposite possessing ultralow dispersion over unprecedented bandwidth. The spatially tailored index and dispersion modification enables creation of arbitrary refractive index gradients.
View Article and Find Full Text PDFOptically pumped lasers based on solution-processed thin-film gain media have recently emerged as low-cost, broadly tunable, and versatile active photonics components that can fit any substrate and are useful for, e.g., chemo- or biosensing or visible spectroscopy.
View Article and Find Full Text PDFA volume Bragg grating recorded in photo-thermo-refractive glass was used to spectrally lock the emission from an 18-μm-wide interband cascade laser ridge to a wavelength of 3.12 μm. The spectral width of emission into the resonant mode is narrowed by more than 300 times, and the thermal wavelength shift is reduced by 60 times.
View Article and Find Full Text PDFHigh-contrast filtering via multiple reflections between matched volume Bragg gratings (VBGs) is demonstrated. The use of multiple reflections serves to increase the suppression ratio of the out-of-band spectral content such that contributions of grating sidelobes can be mitigated. The result is a device that retains spectral and angular selectivity and diffracts light into a single order with high efficiency but reshapes the spectral/angular response to achieve higher signal-to-noise ratios.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2015
We present a theoretical study of various definitions of laser beam width in a given cross section. Quality of the beam is characterized by dimensionless beam propagation products (BPPs) Δx·Δθ(x)/λ, which are different for the 21 definitions presented, but are close to 1. Six particular beams are studied in detail.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2015
Recording of volume Bragg gratings (VBGs) in photo-thermo-refractive glass is limited to a maximum refractive index change about 0.002. We discuss various saturation curves and their influence on the amplitudes of recorded gratings.
View Article and Find Full Text PDFThis paper presents results of cooperative efforts on development of a continuous wave Cs diode pumped alkali laser with moderate output power, which can be considered as a prototype of the commercial device. The developed system operates at 895 nm with output power about 4 W and slope efficiency 28%. Measured turn on time of this system from the standby mode is about a minute.
View Article and Find Full Text PDFAn external volume Bragg grating (VBG) is used for transverse and longitudinal mode stabilization of a broad area diode laser (BAL) with an on-chip transverse Bragg resonance (TBR) grating. The internal TBR grating defines a transverse low-loss mode at a specific propagation angle inside the BAL. Selection of the TBR mode was realized via the angular geometry of an external resonator assembly consisting of the TBR BAL and a feedback element.
View Article and Find Full Text PDFSelection of the fundamental mode of an active large mode area "ribbon" fiber laser with core dimensions of 107.8 μm by 8.3 μm was produced by a transmitting Bragg grating (TBG) in a free-space resonator.
View Article and Find Full Text PDFPhoto-thermo-refractive (PTR) glass is a photosensitive multi-component silicate glass that is commercially used for the recording of volume holographic elements and finds many applications in advanced laser systems. Refractive index decrement in this glass is observed after UV exposure followed by thermal development. This procedure also causes the appearance of Ag-containing particles that can then be optically bleached by using the second harmonic of a Nd:YAG laser.
View Article and Find Full Text PDFWe propose a monolithic large-aperture narrowband optical filter based on a moiré volume Bragg grating formed by two sequentially recorded gratings with slightly different resonant wavelengths. Such recording creates a spatial modulation of refractive index with a slowly varying sinusoidal envelope. By cutting a specimen at a small angle, to a thickness of one-period of this envelope, the longitudinal envelope profile will shift from a sine profile to a cosine profile across the face of the device.
View Article and Find Full Text PDFThe first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a linewidth of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.
View Article and Find Full Text PDFHigh-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment.
View Article and Find Full Text PDFVolume Bragg gratings serve an important role in laser development as devices that are able to manipulate both the wavelength and angular spectrum of light. A common method for producing gratings is holographic recording of a two collimated beam interference pattern in a photosensitive material. This process requires stability of the recording system at a level of a fraction of the recording wavelength.
View Article and Find Full Text PDF