Publications by authors named "Gleb A. Abakumov"

The addition of different substituted -benzoquinones and -iminobenzoquinones to tin(II) bis(-iminophenolates) of the types (Fc-IP)Sn and (Fc-4,6-IP)Sn (where Fc-IP is anion 2-(ferrocenylmethyleneamino)phenolate [Fc-C(H)═N(CH)O] and Fc-4,6-IP is anion 2-(ferrocenylmethyleneamino)-4,6-di--butylphenolate [Fc-C(H)═N(4,6-tBu-CH)O]) in tetrahydrofuran leads to the oxidation of Sn(II) to Sn(IV) with formation of the corresponding tin(IV) catecholates (Fc-4,6-IP)Sn(3,6-Cat) (), (Fc-IP)Sn(3,6-Cat) (), (Fc-4,6-IP)Sn(4-Cl-3,6-Cat) (), (Fc-IP)Sn(4-Cl-3,6-Cat) (), (Fc-4,6-IP)Sn(4,5-Cl-3,6-Cat) (), and (Fc-IP)Sn(4,5-Cl-3,6-Cat) () or the -amidophenolates (Fc-4,6-IP)Sn(AP-Me) (), (Fc-IP)Sn(AP-iPr) (), and (Fc-4,6-IP)Sn(AP-iPr) (). Here ligands 3,6-Cat, 4-Cl-3,6-Cat, and 4,5-Cl-3,6-Cat are dianions 3,6-di--butyl-, 4-chloro-3,6-di--butyl-, and 4,5-dichloro-3,6-di--butylcatecholates, respectively, and AP-Me and AP-iPr are dianions 4,6-di--butyl--(2,6-dimethylphenyl)--amidophenolate and 4,6-di--butyl--(2,6-diisopropylphenyl)--amidophenolate, respectively. Complexes - have been characterized in detail by IR spectroscopy, cyclic voltammetry, and H, C, and Sn NMR spectroscopy.

View Article and Find Full Text PDF

The current study provides a clear understanding of the chemical properties of annelated 3a,6a-diaza-1,4-diphosphapentalenes (DDPs), which are best viewed as stabilized singlet phosphinidenes. It was found that DDPs undergo reversible oligomerization in solution, which provides 1,2,3-diazaphosphole-substituted cyclotetraphosphines, isolated and characterized by X-ray crystal structure analysis. Transformation of the 10-π-electron heteropentalene system into a stabilized phosphinidene occurs when the P-N bond is lengthened, which is facilitated by weak Lewis acids and bases.

View Article and Find Full Text PDF

A square-planar bis-o-semiquinonato nickel complex interacts with N,N'-disubstituted 1,4-diazabutadienes-1,3 forming six-coordinate compounds. The X-ray structural study indicates complex geometry to be close to the octahedral. Magnetic properties are determined by metal-ligand ferromagnetic exchange interactions which are promoted by complex geometry.

View Article and Find Full Text PDF

The chemical oxidation and reduction processes of deprotonated, direduced -quinone-exTTF--quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone-quinone and semiquinone-catechol redox forms indicates that the -phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites.

View Article and Find Full Text PDF

The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.

View Article and Find Full Text PDF

Two redox-isomeric (valence tautomeric) complexes (2,2'-bpy)Co(3,6-DBSQ)2 (1) and (1,10-phen)Co(3,6-DBSQ)2 (2) (where 2,2'-bpy = 2,2'-dipyridine; 1,10-phen = 1,10-phenanthroline; 3,6-DBSQ = 3,6-di-tert-butyl-benzosemiquinone-1,2) reveal phase transitions that accompany redox-isomeric interconversions of semiquinone-catecholato isomer into a bis-(semiquinonato) one. Phase transitions differ one from another by thermodynamic parameters (transition temperature and interval, enthalpy, and entropy). Complexes 1 and 2 have the same crystal system and space group, and they form solid solutions with any molar ratio.

View Article and Find Full Text PDF

A gallium(I) carbenoid derived from redox-active diimine 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) in complexes with molybdenum may serve either as a neutral [(dpp-bian)Ga:] or an anionic [(dpp-bian)Ga:](-) two-electron donor depending on the electronic state of the transition metal.

View Article and Find Full Text PDF

The reduction of 6,12-dichloro-1,2,3,4,7,8,9,10-octahydro-6H,12H-[1,2,3]benzodiazaphospholo[2,1-a][1,2,3]benzodiazaphosphole (3) by metallic magnesium in tetrahydrofuran (THF) affords the N,N'-fused bisphosphole 1 in 92% yield. The compound reveals a novel type of 10π-electron heteroaromatic system [NICS(0) = -11.4], containing a two-coordinate and formally divalent phosphorus atom.

View Article and Find Full Text PDF

The reaction of bis(4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-amidophenolato)indium(III) anion with alkyl iodides is reported. This process includes oxidative addition of two RI (R = Me, Et) molecules to the non-transition metal complex and results in an alkyl transfer to ring carbon atoms with the formation of two new C-C bonds. The interaction proceeds at mild conditions and gives new indium(III) derivatives containing iminocyclohexa-1,4-dienolate type ligands.

View Article and Find Full Text PDF

The interaction of ferrocene with tin(IV) o-benzosemiquinonato complexes in acetonitrile results in a reversible electron transfer (ET) from ferrocene to the redox-active ligand with the formation of electron-transfer complexes [(3,6-Cat)SnBr3](-)[Cp2Fe](+) (1) and [(3,6-Cat)(3,6-SQ)SnCl2](-)[Cp2Fe](+) (2), where 3,6-Cat is the 3,6-di-tert-butyl-catecholate dianion and 3,6-SQ is the 3,6-di-tert-butyl-o-benzosemiquinonato radical anion. The ET process and the solvent effect in the system "ferrocene-o-benzosemiquinonato tin(IV) complexes" were investigated on the basis of a combination of spectroscopic and X-ray diffraction methods. The molecular structures of 1 and 2 were confirmed by X-ray analysis.

View Article and Find Full Text PDF

Edge of reactivity: The reactions of reversible binding of molecular oxygen to catecholate and amidophenolate complexes of Sb(V) are investigated by analyzing the position of electronic (E(HOMO)) and steric (G-parameter) factors. The optimal electronic and steric parameters for such type reactions are found.

View Article and Find Full Text PDF

A new stable sterically hindered o-quinone annelated with a 1,2-dithiete ring was prepared by using mild conditions. The skeleton of the compound comprises diolate and dithiolate functions that have the potential to bind metals leading to the corresponding complexes. The reactivity of this compound as a ligand with respect to both coordination sites was studied.

View Article and Find Full Text PDF

The treatment of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with one equivalent of AlCl(3) and three equivalents of sodium in toluene at 110 °C produced a stable dialane, (dpp-bian)Al-Al(dpp-bian) (1). The reaction of compound 1 with pyridine gave Lewis-acid-base adduct (dpp-bian)(Py)Al-Al(Py)(dpp-bian) (2). Acetylene and phenylacetylene reacted with compound 1 to give cycloaddition products [dpp-bian(R(1)R(2))]Al-Al[(R(2)R(1))dpp-bian] (3: R(1)=R(2)=CH; 4: R(1)=CH, R(2)=CPh).

View Article and Find Full Text PDF

Reactions of diphosphinohydrazines R-NH-N(PPh(2))(2) (R = tBu (1), Ph(2)P (3)) with some metalation reagents (Co[N(SiMe(3))(2)](2), LiN(SiMe(3))(2), La[N(SiMe(3))(2)](3), nBuLi, MeLi) were performed. Compound 1 was synthesized by the reaction of Ph(2)PCl with tert-butylhydrazine hydrochloride in 83% yield. This compound reveals temperature-dependent (31)P NMR spectra due to hindered rotation about the P-N bonds.

View Article and Find Full Text PDF

Acetylene, phenylacetylene, and alkylbutynoates add reversibly to (dpp-bian)Ga-Ga(dpp-bian) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene) to give addition products [dpp-bian(R(1)C=CR(2))]Ga-Ga[(R(2)C=CR(1))dpp-bian]. The alkyne adds across the Ga-N-C section, which results in new carbon-carbon and carbon-gallium bonds. The adducts were characterized by electron absorption, IR, and (1)H NMR spectroscopy and their molecular structures have been determined by single-crystal X-ray analysis.

View Article and Find Full Text PDF

The experimental distribution of electron density in Ph(3)(4,5-OMe-3,6-Bu(t)-Cat)Sb·MeCN (1*) and Ph(3)(4,5-N(2)C(4)H(6)-3,6-Bu(t)-Cat)Sb·MeOH (2*) complexes was studied. According to atoms in molecules theory, the Sb-C(Ph), Sb-O(catecholate), and Sb···N(O) bonds are intermediate, whereas the O-C and C-C bonds are covalent, respectively. The energy of the Sb···N(MeCN) and Sb···O(MeOH) bonds are 7.

View Article and Find Full Text PDF

The interaction of 3,6-di-tert-butyl-o-benzoquinone (3,6-Q) with indium in toluene leads to the tris-o-semiquinolate derivative (3,6-SQ)(3)In (3,6-SQ - radical-anion of 3,6-Q). According to single-crystal X-ray diffraction analysis, this complex has a trigonal prismatic structure. Magnetic measurements revealed that the exchange interactions between odd electrons of the paramagnetic ligands in (3,6-SQ)(3)In are antiferromagnetic in character.

View Article and Find Full Text PDF

The reaction of 8-quinolylhydrazine with 2 equiv of Ph(2)PCl in the presence of Et(3)N gives 8-[(Ph(2)P)(2)NNH]-Quin (1) (Quin = quinolyl) in 84% yield. The heating of 1 at 130 °C for 1 h in toluene results in migration of the [Ph(2)PNPPh(2)] group to a carbon atom of the quinolyl fragment to form an isomer, 7-(Ph(2)P-N═PPh(2))-8-NH(2)-Quin (2). The same migration is caused by the addition of LiN(SiMe(3))(2) to 1.

View Article and Find Full Text PDF

A number of novel phosphinohydrazines, iPr(2)P-NPh-NPh-H (1), iPr(2)P-NH-NH-PiPr(2) (2), iPr(2)P-NMe-NH-PiPr(2) (3), and H-NMe-NH-PiPr(2) (4), were prepared and characterized. The interaction of 1 with 1 equiv of n-BuLi afforded a complex compound [Li(DME)(3)][Li{(NPh-NPh-PiPr(2))-kappaN}(2)] (5). The reaction of 5 with NiBr(2) resulted in the formation of the first stable transition metal phosphinohydrazide [Ni{(NPh-NPh-PiPr(2))-kappa(2)N,P}(2)] (6).

View Article and Find Full Text PDF

A square-pyramidal mixed-halogen nickel(III) NCN-pincer complex (PipeNCN)NiClBr (where PipeNCN=2,6-bis(piperidinomethyl)phenyl) was structurally characterized. Bromine occupies apical position; pincer ligand and chlorine atom are in the basal plane. EPR detects that complex in solution exists as a mixture of two structural isomers with bromine or chlorine atoms in the top of pyramid.

View Article and Find Full Text PDF

Oxidation of tin(IV) o-amidophenolate complexes [Sn(ap)Ph(2)] (1) and [Sn(ap)Et(2)(thf)] (2) (ap=dianion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (ImQ)) with molecular oxygen and sulfur in toluene solutions was investigated. The reaction of oxygen with 1 at room temperature forms a paramagnetic derivative [Sn(isq)(2)Ph(2)] (3) (isq=radical anion of ImQ) and diphenyltin(IV) oxide [{Ph(2)SnO}(n)]. Interaction of 1 with sulfur gives another monophenyl-substituted paramagnetic tin(IV) complex, [Sn(ap)(isq)Ph] (4), and the sulfide, [Ph(3)Sn](2)S.

View Article and Find Full Text PDF

o-Semiquinonic nickel pincer complexes (R2PCP)Ni(SQ) show a versatile coordination sphere dynamics via "swing" or "fan" oscillations depending on the steric properties of the phosphorus substituents.

View Article and Find Full Text PDF

Hydrazine dihydrochloride reacts with 3 equiv of Ph2PCl in tetrahydrofuran in the presence of triethylamine to give tris(diphenylphosphino)hydrazine (1) in 70% yield. Each nitrogen atom in 1 has a trigonal-planar environment according to X-ray analysis. Thermolysis of 1 at 130 degrees C results in the formation of two products: bis(diphenylphosphino)amine and octaphenylcyclotetraphosphazene.

View Article and Find Full Text PDF

Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized.

View Article and Find Full Text PDF

Novel neutral antimony(V) complexes were isolated as crystalline materials and characterized by IR and NMR spectroscopy: o-amidophenolate complexes [4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-amidophenolato]triphenylantimony(V) (Ph3Sb[AP-Me], 1) and [4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolato]triphenylantimony(v) (Ph3Sb[AP-iPr], 2); catecholate complexes (3,6-di-tert-butyl-4-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)Cat], 3), its methanol solvate 3CH3OH (4); (3,6-di-tert-butyl-4,5-di-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)2Cat], 5) and its acetonitrile solvate 5CH3CN (6). Complexes 1-7 were synthesized by oxidative addition of the corresponding o-iminobenzoquinones or o-benzoquinones to Ph3Sb. In the case of the phenanthrene-9,10-diolate (PhenCat) ligand, two different complexes were isolated: Ph3Sb[PhenCat] (7) and [Ph4Sb]+[Ph2Sb(PhenCat)2]- (8).

View Article and Find Full Text PDF