Publications by authors named "Glazier D"

The spin-exotic hybrid meson π_{1}(1600) is predicted to have a large decay rate to the ωππ final state. Using 76.6  pb^{-1} of data collected with the GlueX detector, we measure the cross sections for the reactions γp→ωπ^{+}π^{-}p, γp→ωπ^{0}π^{0}p, and γp→ωπ^{-}π^{0}Δ^{++} in the range E_{γ}=8-10  GeV.

View Article and Find Full Text PDF

Objectives: To evaluate possible predictors of elevated postvoid residual volume (PVR) following onabotulinumtoxinA administration in patients with idiopathic overactive bladder (OAB), a condition that may include urinary urgency, frequency, and nocturia, without any identifiable cause or underlying neurological or metabolic condition.

Methods: Adults who had been treated with 100-200 U onabotulinumtoxinA for OAB and had previous failure of other OAB treatments were identified by retrospective review of medical chart data from three urology clinics in the United States treating patients with a variety of urological conditions. A total of 211 patients were allocated to cohorts based on posttreatment PVR < 200 mL (n = 173) and ≥ 200 mL (n = 38).

View Article and Find Full Text PDF
Article Synopsis
  • Measuring deeply virtual Compton scattering (DVCS) on the neutron is essential for understanding the nucleon's structure through generalized parton distributions (GPDs).
  • Neutron targets help complement data obtained from polarized protons, particularly in determining the poorly understood GPD E, which is crucial for analyzing quark contributions to nucleon spin.
  • The experiment utilized a longitudinally polarized electron beam at Jefferson Lab and the CLAS12 detector to measure DVCS on the neutron for the first time, providing new insights into quark-flavor separation of relevant Compton form factors.
View Article and Find Full Text PDF
Does death drive the scaling of life?

Biol Rev Camb Philos Soc

November 2024

The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors.

View Article and Find Full Text PDF

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear.

View Article and Find Full Text PDF

We report the measurement of the helicity asymmetry E for the pπ^{0} and nπ^{+} final states using, for the first time, an elliptically polarized photon beam in combination with a longitudinally polarized target at the Crystal Ball experiment at MAMI. The results agree very well with data that were taken with a circularly polarized photon beam, showing that it is possible to simultaneously measure polarization observables that require linearly (e.g.

View Article and Find Full Text PDF

Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways.

View Article and Find Full Text PDF

Aims: In studies utilizing a 20-injection-site paradigm of onabotulinumtoxinA treatment for overactive bladder (OAB), some patients performed clean intermittent catheterization (CIC). An alternative injection paradigm of fewer injections targeting the lower bladder may reduce the need for CIC by maintaining upper bladder function. This study evaluated the efficacy and safety of an unapproved alternative 10-injection-site paradigm targeting the lower bladder.

View Article and Find Full Text PDF

Various phenotypic traits relate to the size of a living system in regular but often disproportionate (allometric) ways. These "biological scaling" relationships have been studied by biologists for over a century, but their causes remain hotly debated. Here, I focus on the patterns and possible causes of the body-mass scaling of the rates/durations of various biological processes and life-history events, i.

View Article and Find Full Text PDF

The polarized cross-section ratio σ_{LT^{'}}/σ_{0} from hard exclusive π^{-}Δ^{++} electroproduction off an unpolarized hydrogen target has been extracted based on beam-spin asymmetry measurements using a 10.2  GeV/10.6  GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab.

View Article and Find Full Text PDF

Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.

View Article and Find Full Text PDF

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions.

View Article and Find Full Text PDF

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.

View Article and Find Full Text PDF

Life's size and tempo are intimately linked. The rate of metabolism varies with body mass in remarkably regular ways that can often be described by a simple power function, where the scaling exponent (, slope in a log-linear plot) is typically less than 1. Traditional theory based on physical constraints has assumed that is 2/3 or 3/4, following natural law, but hundreds of studies have documented extensive, systematic variation in .

View Article and Find Full Text PDF

AbstractThe body mass () scaling of resting metabolic rate (RMR) may vary significantly throughout ontogeny for multiple reasons that are not perfectly understood. To compare two major geometric theories of metabolic scaling, surface area (SA) theory and resource transport network (RTN) theory, we tested whether ontogenetic shifts in metabolic scaling relate to changes in body shape in the American eel (). To do so, we compared the log-linear scaling exponents of RMR to () and to body length () in juvenile and subadult eels (glass and yellow eel life stages, respectively).

View Article and Find Full Text PDF

Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic rate and its scaling with body mass. Cell size and growth may affect size-specific metabolic rate, as well as the vertical elevation (metabolic level) and slope (exponent) of metabolic scaling relationships.

View Article and Find Full Text PDF

A precise measurement of the differential cross sections dσ/dΩ and the linearly polarized photon beam asymmetry Σ_{3} for Compton scattering on the proton below pion threshold has been performed with a tagged photon beam and almost 4π detector at the Mainz Microtron. The incident photons were produced by the recently upgraded Glasgow-Mainz photon tagging facility and impinged on a cryogenic liquid hydrogen target, with the scattered photons detected in the Crystal Ball/TAPS setup. Using the highest statistics Compton scattering data ever measured on the proton along with two effective field theories (both covariant baryon and heavy-baryon) and one fixed-t dispersion relation model, constraining the fits with the Baldin sum rule, we have obtained the proton electric and magnetic polarizabilities with unprecedented precision: α_{E1}=10.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the allometric scaling of metabolic rate (MR) in relation to body mass (BM) in animals, focusing on the genetic perspective rather than functional mechanisms.
  • Researchers calculated the additive genetic slope (bA) in eight species, finding that while bA values were mostly aligned with existing literature, there was substantial uncertainty in the estimates.
  • The study reveals a correlation between the additive genetic slope (bA) and phenotypic scaling exponent (bP), with bP generally being lower, suggesting potential measurement errors affecting the results and indicating constraints on how MR and BM might evolve together.
View Article and Find Full Text PDF

The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation.

View Article and Find Full Text PDF

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π^{+} SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q^{2} ranging from 1-7  GeV^{2}.

View Article and Find Full Text PDF

Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering.

View Article and Find Full Text PDF

We present the first measurement of the timelike Compton scattering process, γp→p^{'}γ^{*}(γ^{*}→e^{+}e^{-}), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 View Article and Find Full Text PDF

The quasifree photon beam asymmetry, , has been measured at photon energies, , from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time.

View Article and Find Full Text PDF

The magnitude of many biological traits relates strongly and regularly to body size. Consequently, a major goal of comparative biology is to understand and apply these 'size-scaling' relationships, traditionally quantified by using linear regression analyses based on log-transformed data. However, recently some investigators have questioned this traditional method, arguing that linear or non-linear regression based on untransformed arithmetic data may provide better statistical fits than log-linear analyses.

View Article and Find Full Text PDF