During aging, in addition to increased oxidative stress, inflammation also occurs. A chronic and low-grade inflammation - called "inflammaging" - develops, which contributes to the etiology of diseases related to aging. Resveratrol (Resv.
View Article and Find Full Text PDFIntroduction: One of the markers of aging is oxidative stress, a condition characterized by an increase in free radicals concomitant with a reduction in antioxidant defenses. Within this, resveratrol is a compound that has been shown to act as a potent antioxidant. However, few studies highlight the cellular signaling pathways that are activated or inhibited during aging and that are responsible for this biological effect.
View Article and Find Full Text PDFOne of the theories related to aging is the increase in oxidative stress. Given this, the objective of the study is to evaluate the cellular mechanisms responsible for the resveratrol antioxidant effect on leukocytes from donors aged between 20 and 80 years old. For this, leukocytes from donors of three age groups (20-39, 40-59 and 60-80) were isolated.
View Article and Find Full Text PDFIn the elderly, there is an increase in oxidative and inflammatory activity. Resveratrol (RSV) is a polyphenol that has several proven biological activities, such as antioxidant and anti-inflammatory. Thus, the aim of our study was to verify the possible antioxidant and anti-inflammatory effects of RSV on human mononuclear cells (PBMCs) from donors aged between 40 and 59 and 60-80 years old.
View Article and Find Full Text PDFCurrently, the important role of oxidative stress in the aging process and in neurodegenerative diseases has been highlighted, suggesting the beneficial effect of antioxidants as adjuvant therapy. Resveratrol (RSV) is a polyphenolic compound used in the clinic and has been shown as an antioxidant and anti-inflammatory. Therefore, the objective was to verify neuroprotective and modulating effects of RSV on N2-A cells, pre or post inserted into an oxidative stress environment.
View Article and Find Full Text PDFOne of the causes for aging is free radical damage. Resveratrol (RSV), a polyphenolic compound has been shown to act as an antioxidant and anti-inflammatory. The objective this study was to verify in an oxidative stress environment in Human Mononuclear cells from Middle aged and Elderly donors, the existence of a change in the SIRT1 and AMPK signaling pattern by RSV.
View Article and Find Full Text PDFAging is characterized by a progressive loss of physiological integrity. One common denominator is the increase of reactive oxygen species (ROS) caused by inhibition of important antioxidant pathways. Resveratrol is a polyphenol known for its potent antioxidant activity.
View Article and Find Full Text PDFDiabetes mellitus is a metabolic disorder that causes severe complications due to the increased oxidative stress induced by disease. Many plants are popularly used in the treatment of diabetes, e.g.
View Article and Find Full Text PDFEthnopharmacological Relevance: Baccharis trimera has been traditionally used in Brazil to treat liver diseases.
Aim Of The Study: To evaluate the protective effect of Baccharis trimera in an ethanol induced hepatotoxicity model.
Materials And Methods: The antioxidant capacity was evaluated in vitro by the ability to scavenged the DPPH radical, by the quantification of ROS, NO and the transcription factor Nrf2.
Lycopene is a carotenoid with known antioxidant and anti-inflammatory properties. We aimed to evaluate the in vitro and in vivo effects of lycopene on reducing the redox imbalance and inflammation induced by cigarette smoke (CS). For the in vitro study, J774A.
View Article and Find Full Text PDFExp Biol Med (Maywood)
February 2017
Baccharis trimera, popularly known as "carqueja", is a native South-American plant possessing a high concentration of polyphenolic compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports concerning the signaling pathways involved in this process.
View Article and Find Full Text PDFOur aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme.
View Article and Find Full Text PDFAims: We evaluated the effect of food restriction (FR) on the various reflexes involved in short term cardiovascular regulation; we also evaluated the contribution of the sympathetic nervous systemand of the plasmatic nitric oxide (NO) in the development of the counterregulatory cardiovascular changes triggered by FR.
Main Methods: Female rats were subjected to FR for 14 days, and after this period biochemical measurements of biochemical parameters were performed. For physiological tests, animals were anaesthetised, and a catheter was inserted into the femoral artery and vein for the acquisition of blood pressure and heart hate, and drug infusion, respectively.
Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body's defense mechanisms to destroy invading pathogens.
View Article and Find Full Text PDFAnnatto (Bixa orellana L.) contains a mixture of orange-yellowish pigments due to the presence of various carotenoids that have antioxidant effect. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen and nitrogen species (ROS and RNS) as part of the body's defence mechanisms to destroy invading pathogens.
View Article and Find Full Text PDF