Publications by authors named "Glaucia M S Pinheiro"

HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.

View Article and Find Full Text PDF

J-domain proteins (JDPs) are essential cochaperones of heat shock protein 70 (Hsp70), as they bind and deliver misfolded polypeptides while also stimulating ATPase activity, thereby mediating the refolding process and assisting Hsp70 in maintaining cellular proteostasis. Despite their importance, detailed structural information about JDP‒Hsp70 complexes is still being explored due to various technical challenges. One major challenge is the lack of more detailed structural data on full-length JDPs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interactions between the outer membrane heme transporter HasR and the inner membrane protein HasB in Gram-negative bacteria, using advanced molecular dynamics simulations to understand their role in nutrient uptake.
  • The simulations reveal important dynamics and protein-protein interactions within the periplasmic space, contributing to the stability and function of the nutrient transport system.
  • Experimental validation of the findings indicates that the identified interaction network may also apply to other similar nutrient import systems in Gram-negative bacteria, highlighting its potential significance for antibacterial strategy development.
View Article and Find Full Text PDF

Fungal lipolytic enzymes play crucial roles in various lipid bio-industry processes. Here, we elucidated the biochemical and structural characteristics of an unexplored fungal lipolytic enzyme (TaLip) from Thermoascus aurantiacus var. levisporus, a strain renowned for its significant industrial relevance in carbohydrate-active enzyme production.

View Article and Find Full Text PDF

Molecular chaperones aid proteins to fold and assemble without modifying their final structure, requiring, in several folding processes, the interplay between members of the Hsp70 and Hsp40 families. Here, we report the NMR chemical shift assignments for  H,  N, and  C nuclei of the backbone and side chains of the J-domain of the class B Hsp40 from Saccharomyces cerevisiae, Sis1, complexed with the C-terminal EEVD motif of Hsp70. The data revealed information on the structure and backbone dynamics that add significantly to the understanding of the J-domain-Hsp70-EEVD mechanism of interaction.

View Article and Find Full Text PDF

Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown.

View Article and Find Full Text PDF

The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion.

View Article and Find Full Text PDF
Article Synopsis
  • SGTs are dimeric co-chaperone proteins with distinct domains that play a role in protein quality control (PQC) by interacting with other proteins and aiding stress recovery.
  • Research on AaSGT, a putative SGT from the Aedes aegypti mosquito, showed it can stabilize proteins and maintain stability at higher temperatures.
  • Understanding the structure and function of AaSGT enhances our knowledge of PQC in Aedes aegypti, which could lead to strategies for controlling diseases transmitted by this mosquito.
View Article and Find Full Text PDF

The co-chaperone CHIP (carboxy terminus of Hsc70 interacting protein) is very important for many cell activities since it regulates the ubiquitination of substrates targeted for proteasomal degradation. However, information on the structure-function relationship of CHIP from plants and how it interacts and ubiquitinates other plant chaperones is still needed. For that, the CHIP ortholog from Sorghum bicolor (SbCHIP) was identified and studied in detail.

View Article and Find Full Text PDF

Cellular proteostasis is maintained by a system consisting of molecular chaperones, heat shock proteins (Hsps) and proteins involved with degradation. Among the proteins that play important roles in the function of this system is Hsp90, which acts as a node of this network, interacting with at least 10% of the proteome. Hsp90 is ATP-dependent, participates in critical cell events and protein maturation and interacts with large numbers of co-chaperones.

View Article and Find Full Text PDF

J-domain/Hsp40 proteins cooperate in aiding with folding in the cell by binding partially folded client proteins and delivering them to be folded by Hsp70. The delivery occurs concomitantly to the stimulation of the ATPase activity of Hsp70 via the N-terminally located J-domain. Although several lines of investigation have been used to study J-domain proteins, the presence of highly flexible domains (G/F- and G/M-rich) hold up obtaining a detailed full-length structure.

View Article and Find Full Text PDF

DnaJ/Hsp40 chaperones deliver unfolded proteins and stimulate the ATPase activity of DnaK/Hsp70 via their J-domain. However, the interaction is transient, creating a challenge for detailed analysis. We investigated whether it would be possible to gain further understanding of this interaction by engineering a chimeric polypeptide where the J-domain of Hsp40 was covalently attached to the substrate binding domain (SBD) of Hsp70 by a flexible linker.

View Article and Find Full Text PDF

Chaperones belonging to the small heat shock protein (sHSP) family are ubiquitous and exhibit elevated expression under stresses conditions to protect proteins against aggregation, thereby contributing to the stress tolerance of the organism. Tropical plants are constantly exposed to high temperatures, and the mechanisms by which these plants tolerate heat stress are of foremost importance to basic science as well as applied agrobiotechnology. Therefore, this study aims to characterize sHSPs from different organelles from sugarcane, an important crop that is associated with sugar and bioenergy production.

View Article and Find Full Text PDF

Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp = heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70.

View Article and Find Full Text PDF

Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies.

View Article and Find Full Text PDF

Proteins participate in almost every cell physiological function, and to do so, they need to reach a state that allows its function by folding and/or exposing surfaces of interactions. Spontaneous folding in the cell is in general hindered by its crowded and viscous environment, which favors misfolding and nonspecific and deleterious self-interactions. To overcome this, cells have a system, in which Hsp70 and Hsp90 play a central role to aid protein folding and avoid misfolding.

View Article and Find Full Text PDF

XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule.

View Article and Find Full Text PDF