Publications by authors named "Glaucia Diniz Alessio"

The present study aimed to verify the impact of etiological treatment on the genotype-specific serological diagnosis of chronic Chagas disease patients (CH), using the Chagas-Flow ATE IgG1 methodology. For this purpose, a total of 92 serum samples from CH, categorized as Not Treated (NT, n = 32) and Benznidazole-Treated (Bz-T, n = 60), were tested at Study Baseline and 5Years Follow-up. At Study Baseline, all patients have the diagnosis of Chagas disease confirmed by Chagas-Flow ATE IgG1, using the set of attributes ("antigen/serum dilution/cut-off"; "EVI/250/30%").

View Article and Find Full Text PDF

Chagas disease, caused by , remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment.

View Article and Find Full Text PDF

The complexity and multifactorial characteristics of Chagas disease pathogenesis hampers the establishment of appropriate experimental/epidemiological sets, and therefore, still represents one of the most challenging fields for novel insights and discovery. In this context, we used a set of attributes including phenotypic, functional and serological markers of immune response as candidates to decode the genotype-specific immune response of experimental T. cruzi infection.

View Article and Find Full Text PDF

The molecular and serological methods available for Discrete Typing Units (DTU)-specific diagnosis of Trypanosoma cruzi in chronic Chagas disease present limitations. The study evaluated the performance of Human Chagas-Flow ATE-IgG1 for universal and DTU-specific diagnosis of Chagas disease. A total of 102 sera from Chagas disease patients (CH) chronically infected with TcI, TcVI or TcII DTUs were tested for IgG1 reactivity to amastigote/(A), trypomastigote/(T) and epimastigote/(E) antigens along the titration curve (1:250-1:32,000).

View Article and Find Full Text PDF

The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T.

View Article and Find Full Text PDF

Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T.

View Article and Find Full Text PDF

The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations.

View Article and Find Full Text PDF

This study developed a remarkable methodological innovation (FC-ATE) which enables simultaneous detection of antibodies specific to the three evolutive forms of Trypanosoma cruzi: live amastigote (AMA), live trypomastigote (TRYPO), and fixed epimastigote (EPI) using a differential fluorescence staining as low (AMA), intermediate (TRYPO), and high (EPI). An outstanding performance (100%) was observed in the discrimination of the chagasic (CH) and non-chagasic (NCH) patients. In the applicability of FC-ATE in the diagnosis of Chagas disease, 100% of the CH samples presented positivity in the percentage of positive fluorescent parasites (PPFP) for all the three forms of T.

View Article and Find Full Text PDF