Publications by authors named "Gladys Ko"

Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance K channels (K3.

View Article and Find Full Text PDF

Peptide Lv is a small endogenous secretory peptide that is proangiogenic through hyperpolarizing vascular endothelial cells (ECs) by enhancing the current densities of K3.1 channels. However, it is unclear how peptide Lv enhances these currents.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR.

View Article and Find Full Text PDF

Peptide Lv is a small endogenous secretory peptide that is expressed in various tissues and conserved across different species. Patients with diabetic retinopathy, an ocular disease with pathological angiogenesis, have upregulated peptide Lv in their retinas. The pro-angiogenic activity of peptide Lv is in part through promoting vascular endothelial cell (EC) proliferation, migration, and sprouting, but its molecular mechanism is not completely understood.

View Article and Find Full Text PDF

Cadmium (Cd) is an environmental and occupational pollutant inhaled through smoking or ingested through contaminated food. Yet, little is known about its teratogenicity. In this study, the effects of Cd on embryonic heart development were investigated by exposing Cd to chicken embryos in ovo.

View Article and Find Full Text PDF

Neurovascular eye problems are better prevented than managed or treated. Despite growing concern of occurrence in aging populations and development secondary to diseases such as diabetes and hypertension, we currently have very few options to tackle this global problem. Creating effective and high-throughput screening strategies is as important as the intervention itself.

View Article and Find Full Text PDF

Obesity-associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime. Chronic inflammation is a hallmark of obesity and T2D and a well-accepted major contributor to DR, and retinal photoreceptors are a major source of intraocular inflammation and directly contribute to vascular abnormalities in diabetes. However, how diabetic insults cause photoreceptor inflammation is not well known.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a chronic complication associated with diabetes and the number one cause of blindness in working adults in the US. More than 90% of diabetic patients have obesity-associated type 2 diabetes (T2D), and 60% of T2D patients will develop DR. Photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy (DR) is the leading cause of blindness among the working population in the USA. Current therapies, including anti-vascular endothelial growth factor treatments, cannot completely reverse the visual defects induced by DR. MicroRNA-150 (miR-150) is a regulator that suppresses inflammation and pathological angiogenesis.

View Article and Find Full Text PDF

While the correlation between diabetes during pregnancy and birth defects is well-established, how hyperglycemia causes developmental abnormalities remains unclear. In this study, we developed a novel "hyperglycemic" chicken embryonic model by administrating various doses of glucose to fertilized eggs at embryonic stages HH16 or HH24. When the embryos were collected at HH35, the LD50 was 1.

View Article and Find Full Text PDF

Background We recently discovered a small endogenous peptide, peptide Lv, with the ability to activate vascular endothelial growth factor receptor 2 and its downstream signaling. As vascular endothelial growth factor through vascular endothelial growth factor receptor 2 contributes to normal development, vasodilation, angiogenesis, and pathogenesis of various diseases, we investigated the role of peptide Lv in vasodilation and developmental and pathological angiogenesis in this study. Methods and Results The endothelial cell proliferation, migration, and 3-dimensional sprouting assays were used to test the abilities of peptide Lv in angiogenesis in vitro.

View Article and Find Full Text PDF

We used a screening strategy to test for reprogramming factors for the conversion of human cardiac progenitor cells (CPCs) into Pacemaker-like cells. Human transcription factors SHOX2, TBX3, TBX5, TBX18, and the channel protein HCN2, were transiently induced as single factors and in trio combinations into CPCs, first transduced with the connexin 30.2 (CX30.

View Article and Find Full Text PDF

Mitochondrial fission and fusion are dependent on cellular nutritional states, and maintaining this dynamics is critical for the health of cells. Starvation triggers mitochondrial fusion to maintain bioenergetic efficiency, but during nutrient overloads (as with hyperglycemic conditions), fragmenting mitochondria is a way to store nutrients to avoid waste of energy. In addition to ATP production, mitochondria play an important role in buffering intracellular calcium (Ca).

View Article and Find Full Text PDF

The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system.

View Article and Find Full Text PDF

Energy expenditure and metabolism in the vertebrate retina are under circadian control, as we previously reported that the overall retinal ATP content and various signaling molecules related to metabolism display daily or circadian rhythms. Changes in the fission and fusion process of mitochondria, the major organelles producing ATP, in retinal photoreceptors are largely dependent on light exposure, but whether mitochondrial dynamics in photoreceptors and retinal neurons are under circadian control is not clear. Herein, we investigated the possible roles of circadian oscillators in regulating mitochondrial dynamics, mitophagy, and redox states in the chicken retina and mammalian photoreceptors.

View Article and Find Full Text PDF

L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Ca1.2, Ca1.

View Article and Find Full Text PDF

Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules on the plasma membrane including phosphatidylserine, sodium-potassium exchanger complex, and L-type voltage-gated calcium channels (LTCCs).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the effects of metformin on dysfunctional retinas in obesity-induced type 2 diabetic mice.

Methods: A high-fat diet (HFD)-induced diabetic mouse model (C57BL/6J) was used in this study. After 2 months of the HFD regimen, HFD mice were given daily metformin through oral gavage.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the leading cause of blindness among American adults above 40 years old. The vascular complication in DR is a major cause of visual impairment, making finding therapeutic targets to block pathological angiogenesis a primary goal for developing DR treatments. MicroRNAs (miRs) have been proposed as diagnostic biomarkers and potential therapeutic targets for various ocular diseases including DR.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes-associated diabetic retinopathy (DR).

Methods: A high-fat diet (HFD)-induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG).

View Article and Find Full Text PDF

We previously identified peptide Lv, a novel bioactive peptide that enhances the activity of L-type voltage-gated calcium channels (L-VGCCs) in cone photoreceptors. In this study, we verified that peptide Lv was able to augment L-VGCC currents in cardiomyocytes, as well as promote proliferation of endothelial cells. We used a proteomics approach to determine the specific receptors and binding partners of peptide Lv and found that vascular endothelial growth factor receptor 2 (VEGFR2) interacted with peptide Lv.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11.

View Article and Find Full Text PDF

In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood.

View Article and Find Full Text PDF

Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors.

View Article and Find Full Text PDF