Food Funct
August 2024
Altered -glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant -glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the -glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFBiological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g.
View Article and Find Full Text PDFACS Omega
June 2023
Glycoproteins are an underexploited drug target for cancer therapeutics. In this work, we integrated computational methods in network pharmacology and docking approaches to identify phytochemical compounds that could potentially interact with several cancer-associated glycoproteins. We first created a database of phytochemicals from selected plant species, (sapodilla/chico), (mango), (soursop/guyabano), (jackfruit/langka), (langsat/lanzones), and (bignay), and performed pharmacokinetic analysis to determine their drug-likeness properties.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. Here, the N-glycome, proteome, and N-glycosylation distribution maps of tumor and peritumoral tissues of Filipino lung cancer patients (n = 5) were characterized.
View Article and Find Full Text PDFLansium domesticum is identified as a potential source of anticancer compounds. However, there are minimal studies on its anti-lung cancer properties as well as its mechanism of action. Here, we show the specificity of lanzones hexane (LH) leaf extracts to non-small cell lung cancer cells (A549) compared to normal lung fibroblast cells (CCD19-Lu) and normal epithelial prostate cells (PNT2).
View Article and Find Full Text PDFAberrant glycosylation has been extensively reported in cancer, with fundamental changes in the glycosylation patterns of cell-surface and secreted proteins largely occurring during cancer progression. As such, serum glycan and glycopeptide biomarkers have been discovered using mass spectrometry and proposed for cancer detection. Here, we report for the first time potential serum -glycan and glycopeptide biomarkers for Philippine lung cancer patients.
View Article and Find Full Text PDFPlants (Basel)
September 2022
L. (Guyabano) leaves are reported to exhibit anticancer activity against cancer cells. In this study, the ethyl acetate extract from guyabano leaves was purified through column chromatography, and the cytotoxic effects of the semi-purified fractions were evaluated against A549 lung cancer cells using in vitro MTS cytotoxicity and scratch/wound healing assays.
View Article and Find Full Text PDFCancer progression is linked to aberrant protein glycosylation due to the overexpression of several glycosylation enzymes. These enzymes are underexploited as potential anticancer drug targets and the development of rapid-screening methods and identification of glycosylation inhibitors are highly sought. An integrated bioinformatics and mass spectrometry-based glycomics-driven glycoproteomics analysis pipeline was performed to identify an N-glycan inhibitor against lung cancer cells.
View Article and Find Full Text PDFTargeting enzymes associated with the biosynthesis of aberrant glycans is an under-utilized strategy in discovering potential inhibitors or drugs against cancer. The formation of cancer-associated glycans is mainly due to the dysregulated expression of glycosyltransferases and glycosidases, which play crucial roles in maintaining cellular structure and function. We screened a database of more than 14,000 compounds consisting of natural products and drugs for inhibition against four glycosylation enzymes - Alpha1-6FucT, ST6Gal1, ERMan1, and GlcNAcT-V.
View Article and Find Full Text PDFBackground: Tomato is one of the widely cultivated crops worldwide that is affected by several pests, such as fungi (Fusarium oxysoporum, Alternaria solani), bacteria (Pectobacterium carotovorum) and weeds (Cyperus iria L., Amaranthus spinosus). A growing interest has emerged for developing plant-derived pesticidal compounds to counteract these pests.
View Article and Find Full Text PDFA strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity.
View Article and Find Full Text PDFChemical-induced read through of premature stop codons might be exploited as a potential treatment strategy for genetic disorders caused by nonsense mutations. Despite the promise of this approach, only a few read-through compounds (RTCs) have been discovered to date. These include aminoglycosides (e.
View Article and Find Full Text PDFWe report the synthesis and in vitro evaluation of a multivalent homing device, a polymer which contains preordered pendant groups with dual specificity, a trisaccharide moiety, which is specific for the siglec CD22, and an antibody specific hapten, nitrophenol. The device efficiently attracts antihapten IgM to the surface of human lymphoma B cells as well as to CD22-conjugated magnetic beads by mediating the formation of a ternary complex on the surface of the target.
View Article and Find Full Text PDFIn earlier studies, we identified the C-9 amido derivative 1 (9-(4'-hydroxy-4-biphenyl)acetamido-9-deoxy-Neu5Gcα2-6GalOMP) and the C-9 amino derivative 2 (9-(4'-hydroxy-4-biphenyl)methylamino-9-deoxy-Neu5Gcα2-6GalOMP) have the most promising affinity for mouse CD22 and human CD22, respectively. Replacing the subterminal galactose residue (2-6Gal-OMP) of 1 with benzyl (5) or biphenylmethyl (6) as aglycone led to even higher potency for mCD22. In this study, both compounds showed improved potency and selectivity for CD22 (IC(50) 70 nM) and 712-fold more selective for CD22 than for MAG.
View Article and Find Full Text PDFThe major structural component of the mycobacterial cell wall, the mycolyl-arabinogalactan-peptidoglycan complex, possesses a galactan core composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating beta-(1-->6) and beta-(1-->5) linkages. Recent studies have shown that the entire galactan is synthesized by two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2. We report here saturation transfer difference (STD) NMR studies GlfT2 using two trisaccharide acceptor substrates, beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-O(CH2)7CH3 (2) and beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-O(CH2)7CH3 (3), as well as the donor substrate for the enzyme, UDP-Galf.
View Article and Find Full Text PDFAntibody-mediated cell depletion therapy has proven to provide significant clinical benefit in treatment of lymphomas and leukemias, driving the development of improved therapies with novel mechanisms of cell killing. A current clinical target for B-cell lymphoma is CD22, a B-cell-specific member of the sialic acid binding Ig-like lectin (siglec) family that recognizes alpha2-6-linked sialylated glycans as ligands. Here, we describe a novel approach for targeting B lymphoma cells with doxorubicin-loaded liposomal nanoparticles displaying high-affinity glycan ligands of CD22.
View Article and Find Full Text PDFAutoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the "two-signal" model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands.
View Article and Find Full Text PDFThe mycobacterial cell wall is a complex architecture, which has, as its major structural component, a lipidated polysaccharide covalently bound to peptidoglycan. This structure, termed the mycolyl-arabinogalactan-peptidoglycan complex, possesses a core galactan moiety composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating beta-(1-->6) and beta-(1-->5) linkages. Recent studies have shown that the entire galactan is synthesized by the action of only two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2.
View Article and Find Full Text PDFThe major structural component of the cell wall in Mycobacterium tuberculosis, infection by which causes tuberculosis, is the mycolyl-arabinogalactan (mAG) complex. This large glycoconjugates has at its core a backbone of approximately 30 D-galactofuranose (Gal(f)) residues that are linked to peptidoglycan by way of a linker disaccharide containing L-rhamnose and 2-acetamido-2-deoxy-D-glucose. Recent studies have supported a model of galactan biosynthesis in which the entire structure is assembled by the action of two bifunctional galactofuranosyltransferases.
View Article and Find Full Text PDFAs a key constituent of their protective cell wall all mycobacteria produce a large structural component, the mycolyl-arabinogalactan (mAG) complex, which has at its core a galactan moiety of alternating beta-(1-->5) and beta-(1-->6) galactofuranosyl residues. Galactan biosynthesis is essential for mycobacterial viability and thus inhibitors of the enzymes involved in its assembly are potential drugs for the treatment of mycobacterial diseases, including tuberculosis. Only two galactofuranosyltransferases, GlfT1 and GlfT2, are responsible for the biosynthesis of the entire galactan domain of the mAG and we report here the first high-throughput assay for GlfT2.
View Article and Find Full Text PDFTwo galactosyl transferases can apparently account for the full biosynthesis of the cell wall galactan of mycobacteria. Evidence is presented based on enzymatic incubations with purified natural and synthetic galactofuranose (Galf) acceptors that the recombinant galactofuranosyl transferase, GlfT1, from Mycobacterium smegmatis, the Mycobacterium tuberculosis Rv3782 ortholog known to be involved in the initial steps of galactan formation, harbors dual beta-(1-->4) and beta-(1-->5) Galf transferase activities and that the product of the enzyme, decaprenyl-P-P-GlcNAc-Rha-Galf-Galf, serves as a direct substrate for full polymerization catalyzed by another bifunctional Galf transferase, GlfT2, the Rv3808c enzyme.
View Article and Find Full Text PDFElimination of the helminth parasite Nippostrongylus brasiliensis from infected mice is mediated by IL-4 or IL-13 and dependent on the IL-4Ralpha chain and the transcription factor Stat6 in non-hematopoietic cells. However, it is not clear which Stat6-dependent effector molecules mediate worm expulsion. We identified intelectin-1 and -2 as Stat6-dependent genes that are induced during infection.
View Article and Find Full Text PDFThe major structural component of the cell wall of Mycobacterium tuberculosis is a lipidated polysaccharide, the mycoyl-arabinogalactan-peptidoglycan (mAGP) complex. This glycoconjugate plays a key role in the survival of the organism, and thus, enzymes involved in its biosynthesis have attracted attention as sites for drug action. At the core of the mAGP is a galactan composed of D-galactofuranose residues attached via alternating beta-(1-->5) and beta-(1-->6) linkages.
View Article and Find Full Text PDFMycobacteria produce a cell-surface glycoconjugate, lipoarabinomannan (LAM), which has been shown to be a potent modulator of the immune response that arises from infection by these organisms. Recently, LAM from the human pathogens Mycobacterium tuberculosis and M. kansasii has been shown to contain an unusual 5-deoxy-5-methylthio-xylofuranose (MTX) residue as well as its corresponding oxidized counterpart, 5-deoxy-5-methylsulfoxy-xylofuranose (MSX).
View Article and Find Full Text PDF