Publications by authors named "Gladue R"

This study seeks to generate analytic insights into risk management and probability of an identifiable primary immunodeficiency defect. The Jeffrey Modell Centers Network database, Jeffrey Modell Foundation's 10 Warning Signs, the 4 Stages of Testing Algorithm, physician-reported clinical outcomes, programs of physician education and public awareness, the SPIRIT® Analyzer, and newborn screening, taken together, generates P values of less than 0.05%.

View Article and Find Full Text PDF

Background: Linezolid is active against a broad range of gram-positive pathogens and has the potential to also affect production of bacterial toxins and host immune function.

Objective: To assess the evidence for direct effects of linezolid on bacterial toxin synthesis and modulation of host immune responses.

Methods: Literature searches were performed of the PubMed and OVID databases.

View Article and Find Full Text PDF

CD40 is a member of the TNF family of receptors that has been shown to play a crucial role in enhancing dendritic cell activity and fostering anti-tumor immune responses. In this study, we demonstrate the in vitro properties and in vivo efficacious activity of the CD40 agonist antibody, CP-870,893. CP-870,893 is a fully human, IgG2 antibody that selectively interacts with CD40 at a site distinct from its ligand-binding region with a KD of 0.

View Article and Find Full Text PDF

The identification of chemokines and their receptors as potent mediators of leukocyte infiltration raised interest in the potential role of these proteins on disease pathogenesis. This is exemplified by the chemokine receptor, CCR1, which has been shown to be up-regulated in a number of human diseases, the implications of which have been suggested by animal models where inhibition of CCR1 or its ligands have shown beneficial effects. These data support the possibility that a CCR1 antagonist will provide therapeutic benefit to patients with inflammatory diseases.

View Article and Find Full Text PDF

Large scale algae cultures present interesting challenges in that they exhibit characteristics of typical bacterial and animal cell cultures. One current commercial food additive, docosahexaenoic acid (DHA), is produced using the dinoflagellate algae, Crypthecodinium cohnii. Like animal cell culture, the perceived sensitivity of algae culture to hydrodynamic forces has potentially limited the agitation and aeration applied to these systems.

View Article and Find Full Text PDF

Objective: The CCR2 receptor plays a crucial role in monocyte recruitment and has been implicated as a contributing factor to atherosclerosis. CCR2 receptor deletion leads to significant inhibition of lesion development. Our objective was to determine if CCR2 receptor blockade with a small molecule would have a beneficial effect of decreasing established lesions.

View Article and Find Full Text PDF

This paper is an interview between Carrielynn Lund and Cree Elder Ruth Gladue on research and community resilience in her semi-remote, northern Alberta community. Ruth is a Cree Elder born "during the war years." She is married and has two girls, one boy, and "a few grandchildren.

View Article and Find Full Text PDF

The increased interest in the benefits of omega-3 fatty acids for human health has resulted in the commercial development of the dinoflagellate Crypthecodinium cohnii for production of docosahexaenoic acid (DHA). The growing market demand for DHA requires highly efficient, very large scale cultures of DHA. While the effects of hydrodynamic forces on dinoflagellates have been investigated for several decades, the majority of the work focused on the negative effects of oceanic turbulence on the population growth of environmentally important dinoflagellates.

View Article and Find Full Text PDF

CCR6 is expressed in a number of dermatological inflammatory diseases. Here, we report that mice sensitized with the hapten oxazolone had increased numbers of CCR6+ T cells in the draining lymph nodes. Using CCR6-/- mice, we assessed the role of CCR6 on the development of contact hypersensitivity.

View Article and Find Full Text PDF

Background And Objectives: The chemokine receptor CCR1 is believed to play a role in several inflammatory diseases, primarily by promoting the migration of leukocytes through the endothelial barrier. Thus, a possible strategy for treating inflammatory diseases is inhibition of leukocyte infiltration by antagonising CCR1. Recently, CP-481,715 has been described as a potent and specific antagonist of CCR1.

View Article and Find Full Text PDF

CD40-mediated interactions play an important role in the response to a variety of diseases, including cancer. Engagement of CD40 on antigen-presenting cells, namely dendritic cells (DC), by CD40L leads to maturation and up-regulation of co-stimulatory molecules B7.1 and B7.

View Article and Find Full Text PDF

The synthesis, biological activity, and pharmacokinetic profile of CCR1 antagonists are described.

View Article and Find Full Text PDF

Innate inflammatory events promoting antiviral defense in the liver against murine cytomegalovirus (MCMV) infection have been characterized. However, the mechanisms that regulate the selective recruitment of inflammatory T lymphocytes to the liver during MCMV infection have not been defined. The studies presented here demonstrate the expression of monokine induced by gamma interferon (IFN-gamma; Mig/CXCL9) and IFN-gamma-inducible protein 10 (IP-10/CXCL10) in liver leukocytes and correlate their production with the infiltration of MCMV-specific CD8 T cells into the liver.

View Article and Find Full Text PDF

We previously described the in vitro characteristics of the potent and selective CCR1 antagonist, CP-481,715. In addition to being selective for CCR1 vs other chemokine receptors, CP-481,715 is also specific for human CCR1 (hCCR1), preventing its evaluation in classical animal models. To address this, we generated mice whereby murine CCR1 was replaced by hCCR1 (knockin) and used these animals to assess the anti-inflammatory properties of CP-481,715.

View Article and Find Full Text PDF

T cells infiltrating the inflamed liver express high levels of CXCR 3 and show enhanced migration to CXCR 3 ligands in chemotactic assays. Moreover, CXCR 3 ligands are up-regulated on hepatic endothelium at sites of T-cell infiltration in chronic hepatitis, and their presence correlates with outcome of inflammatory liver disease. We used a flow-based adhesion assay with human hepatic endothelium to investigate the function of CXCR 3 on lymphocyte adhesion to and transmigration through hepatic endothelium under physiological conditions of blood flow.

View Article and Find Full Text PDF

The chemokines are a large gene superfamily with critical roles in development and immunity. The chemokine receptor CXCR3 appears to play a major role in the trafficking of activated Th1 lymphocytes. There are at least three major ligands for CXCR3: mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11, and of these three ligands, CXCL11 is the least well-characterized.

View Article and Find Full Text PDF

Chemokines are 8- to 10-kDa proteins that regulate leukocyte infiltration into inflammatory sites. The therapeutic potential of inhibiting these proteins is supported by their increased expression in human diseases, numerous studies in animal models of disease and, in some cases, by human genetic association studies. These findings, combined with the ability of chemokines to interact with 7-transmembrane G protein-coupled receptors, render them attractive drug discovery targets.

View Article and Find Full Text PDF

The synthesis, biological activity, and pharmacokinetic profile of novel CCR1 antagonists are described.

View Article and Find Full Text PDF

The present manuscript details structure-activity relationship studies of lead structure 1, which led to the discovery of CCR1 antagonists >100-fold more potent than 1.

View Article and Find Full Text PDF

The present manuscript details the discovery and early fundamental structure-activity relationship studies involving compound 3, a novel hydroxyethylene peptide isostere derived molecule that provides micromolar inhibition of CCL3 binding to its receptor CCR1. Initial studies established this screening hit as a legitimate lead for further medicinal chemistry optimization.

View Article and Find Full Text PDF

The chemokines CCL3 and CCL5, as well as their shared receptor CCR1, are believed to play a role in the pathogenesis of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and transplant rejection. In this study we describe the pharmacological properties of a novel small molecular weight CCR1 antagonist, CP-481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methyloctyl]amide). Radiolabeled binding studies indicate that CP-481,715 binds to human CCR1 with a Kd of 9.

View Article and Find Full Text PDF

Eosinophils are recruited to sites of inflammation via the action of a number of chemical mediators, including PAF, leukotrienes, eotaxins, ECF-A and histamine. Although many of the cell-surface receptors for these mediators have been identified, histamine-driven chemotaxis has not been conclusively attributed to any of the three known histamine receptor subtypes, suggesting the possibility of a 4th histamine-responsive receptor on eosinophils. We have identified and cloned a novel G protein-coupled receptor (GPCR), termed Pfi-013, from an IL-5 stimulated eosinophil cDNA library which is homologous to the human histamine H3 receptor, both at the sequence and gene structure level.

View Article and Find Full Text PDF

CCR2, and its principle ligand MCP-1/CCL2, have been well documented for their ability to induce monocyte infiltration and promote the pathogenesis of rheumatoid arthritis and atherosclerosis. In order to assess additional roles for CCR2, we inserted allogeneic implants into CCR2-/- and MCP-1-/- mice and characterized T cell responses and the regulatory role of CCR2 on MCP-1 expression. The results demonstrate a marked decrease in lymphocyte infiltration in both CCR2-/- and MCP-1-/- animals.

View Article and Find Full Text PDF

Background: Graft rejection after liver transplantation is associated with a lymphocytic infiltrate, the nature of which will be determined by, among various factors, the local activity of chemokines that attract particular subsets of effector cells to the graft.

Methods: The expression of chemokines and receptors in human liver allografts was studied by immunohistochemistry of tissue and flow cytometry of blood and liver-derived lymphocytes. Receptor function was assessed with in vitro chemotaxis.

View Article and Find Full Text PDF

The T-cell-specific receptor, CTLA-4, has been demonstrated to be a potent negative regulator of lymphocyte activation, the functional significance of which has been demonstrated in murine tumor models using blocking antibodies. However, the mechanism(s) involved in enhancing tumor regression has not been identified. In this study, we determined whether IFN gamma was playing a role in this activity.

View Article and Find Full Text PDF