Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown.
View Article and Find Full Text PDFBiallelic mutations in the gene cause spondyloenchondrodysplasia with immune dysregulation (SPENCDI). SPENCDI is characterized by the phenotypic triad of skeletal dysplasia, innate and adaptive immune dysfunction, and variable neurologic findings ranging from asymptomatic brain calcifications to severe developmental delay with spasticity. Immune dysregulation in SPENCDI is often refractory to standard immunosuppressive treatments.
View Article and Find Full Text PDFDiamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation.
View Article and Find Full Text PDFIntroduction: Pyruvate kinase (PK) deficiency is a rare, under-recognised, hereditary condition that leads to chronic haemolytic anaemia and potentially serious secondary complications, such as iron overload, cholecystitis, pulmonary hypertension and extramedullary haematopoiesis. It is an autosomal recessive disease caused by homozygous or compound heterozygous mutations in the gene. Due to its rarity and clinical heterogeneity, information on the natural history and long-term clinical course of PK deficiency is limited, presenting major challenges to patient management, the development of new therapies and establishing disease-specific treatment recommendations.
View Article and Find Full Text PDFDiamond-Blackfan anemia (DBA) is a ribosomopathy that is characterized by macrocytic anemia, congenital malformations, and early onset during childhood. Genetic studies have demonstrated that most patients carry mutations in one of the 20 related genes, most of which encode ribosomal proteins (RP). Treatment of DBA includes corticosteroid therapy, chronic red blood cell transfusion, and other forms of immunosuppression.
View Article and Find Full Text PDFBackground: Identification of hemoglobin (Hb) variants is of significant value in the clinical diagnosis of hemoglobinopathy. However, conventional methods for identification of Hb variants in clinical laboratories can be inadequate due to the lack of structural characterization. We describe the use of neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry (CE-HR-MS) to achieve high-performance top-down identification of Hb variants.
View Article and Find Full Text PDFDiamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs).
View Article and Find Full Text PDFMaster regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation.
View Article and Find Full Text PDFThe congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families.
View Article and Find Full Text PDFNemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage.
View Article and Find Full Text PDFBackground: Pyruvate kinase deficiency (PKD) is a rare, autosomal recessive red blood cell enzyme disorder, which leads to lifelong hemolytic anemia and associated complications from the disease and its management.
Methods: An international, multicenter registry enrolled 124 individuals younger than 18 years old with molecularly confirmed PKD from 29 centers. Retrospective and prospective clinical data were collected.
Objectives: Pyruvate kinase (PK) deficiency is caused by PKLR gene mutations, leading to defective red blood cell glycolysis and hemolytic anemia. Rates of comorbidities and complications by transfusion history and relative to the general population remain poorly quantified.
Methods: Data for patients aged ≥ 18 years with two confirmed PKLR mutations were obtained from the PK deficiency Natural History Study (NCT02053480).
Pyruvate kinase deficiency (PKD) is the most common cause of chronic hereditary non-spherocytic hemolytic anemia and results in a broad spectrum of disease. The diagnosis of PKD requires a high index of suspicion and judicious use of laboratory tests that may not always be informative, including pyruvate kinase enzyme assay and genetic analysis of the PKLR gene. A significant minority of patients with PKD have occult mutations in non-coding regions of PKLR which are missed on standard genetic tests.
View Article and Find Full Text PDFBackground: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation.
View Article and Find Full Text PDFDiamond-Blackfan anemia (DBA) results from haploinsufficiency of ribosomal protein subunits in hematopoietic progenitors in the earliest stages of committed erythropoiesis. Nemo-like kinase (NLK) is chronically hyperactivated in committed erythroid progenitors and precursors in multiple human and murine models of DBA. Inhibition of NLK activity and suppression of NLK expression both improve erythroid expansion in these models.
View Article and Find Full Text PDFDiamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity.
View Article and Find Full Text PDFDiagnosis of pyruvate kinase deficiency (PKD), the most common cause of hereditary non-spherocytic haemolytic anaemia, remains challenging in routine practice and no biomarkers for clinical severity have been characterised. This prospective study enrolled 41 patients with molecularly confirmed PKD from nine North American centres to evaluate the diagnostic sensitivity of pyruvate kinase (PK) enzyme activity and PK:hexokinase (HK) enzyme activity ratio, and evaluate the erythrocyte PK (PK-R) protein level and erythrocyte metabolites as biomarkers for clinical severity. In this population not transfused for ≥90 days before sampling, the diagnostic sensitivity of the PK enzyme assay was 90% [95% confidence interval (CI) 77-97%], whereas the PK:HK ratio sensitivity was 98% (95% CI 87-100%).
View Article and Find Full Text PDFBackground: Pyruvate kinase deficiency is caused by mutations in and leads to congenital hemolytic anemia. Mitapivat is an oral, small-molecule allosteric activator of pyruvate kinase in red cells.
Methods: In this uncontrolled, phase 2 study, we evaluated the safety and efficacy of mitapivat in 52 adults with pyruvate kinase deficiency who were not receiving red-cell transfusions.