Publications by authors named "Gkika D"

Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed.

View Article and Find Full Text PDF

Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating.

View Article and Find Full Text PDF

The escalating issue of water pollution has become a worldwide issue that has captured the attention of numerous scientists. Molecularly imprinted polymers (MIPs) have emerged as adaptable materials with exceptional attributes, including easy synthesis, low cost, remarkable durability, long life, and accessibility. These attributes have motivated researchers to develop novel materials based on MIPs to tackle hazardous contaminants in environmental matrices.

View Article and Find Full Text PDF

As society progresses and industrializes, the issue of water pollution, caused by a wide array of organic and inorganic pollutants, poses significant risks to both human well-being and the environment. Given its distinctive characteristics, water pollution has become a paramount concern for society, necessitating immediate attention. Numerous studies have been conducted on wastewater treatment, primarily focusing on two key approaches: adsorption and photocatalytic degradation.

View Article and Find Full Text PDF

Breast cancer is a major health concern worldwide, and resistance to therapies remains a significant challenge in treating this disease. In breast cancer, Transient Receptor Potential (TRP) channels are well studied and constitute key players in nearly all carcinogenesis hallmarks. Recently, they have also emerged as important actors in resistance to therapy by modulating the response to various pharmaceutical agents.

View Article and Find Full Text PDF

Graphene is a popular material with outstanding properties due to its single layer. Graphene and its oxide have been put to the test as nano-sized building components for separation membranes with distinctive structures and adjustable physicochemical attributes. Graphene-based membranes have exhibited excellent water and gas purification abilities, which have garnered the spotlight over the past decade.

View Article and Find Full Text PDF

Over the past three decades, environmental concerns about the water pollution have been raised on societal and industrial levels. The presence of pollutants stemming from cosmetic products has been documented in wastewater streams outflowing from industrial as well as wastewater treatment plants. To this end, a series of consistent measures should be taken to prevent emerging contaminants of water resources.

View Article and Find Full Text PDF

In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies.

View Article and Find Full Text PDF

Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments.

View Article and Find Full Text PDF

Assessing the financial impact of polymers of intrinsic microporosity, otherwise known as PIMs, at the lab scale has been impeded by the absence of a holistic approach that would envelop all related financial parameters, and most importantly any indirect costs, such as laboratory accidents that have been consistently neglected and undervalued in past assessments. To quantify the cost of PIMs in relation to the risks befalling a laboratory, an innovative cost evaluation approach was designed. This approach consists of three stages.

View Article and Find Full Text PDF

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts.

View Article and Find Full Text PDF

Despite the abundance of published reviews over the last few years, the inconsistent data representation in regards to the use of adsorbents in each work, renders the task of comparing them challenging. Disposing the adsorbent may have adverse environmental impact, which should be mitigated through regeneration and reuse processes, such as desorption. This review discusses how the importance of desorption and regeneration equates that of the adsorption stage, and presents various regeneration methods as well as the influencing parameters, advantages, and disadvantages thereof.

View Article and Find Full Text PDF

Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments.

View Article and Find Full Text PDF

Calcium ion (Ca) signaling is critical to many physiological processes, and its kinetics and subcellular localization are tightly regulated in all cell types. All Ca flux perturbations impact cell function and may contribute to various diseases, including cancer. Several modulators of Ca signaling are attractive pharmacological targets due to their accessibility at the plasma membrane.

View Article and Find Full Text PDF

Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity both Ca-dependent or Ca-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating.

View Article and Find Full Text PDF

In the last three decades, a growing number of studies have implicated ion channels in all essential processes of prostate carcinogenesis, including cell proliferation, apoptosis, migration, and angiogenesis. The changes in the expression of individual ion channels show a specific profile, making these proteins promising clinical biomarkers that may enable better molecular subtyping of the disease and lead to more rapid and accurate clinical decision-making. Expression profiles and channel function are mainly based on the tumoral tissue itself, in this case, the epithelial cancer cell population.

View Article and Find Full Text PDF

During the recent Covid-19 pandemic, additive Technology and Social Media were used to tackle the shortage of Personal Protective Equipment. A literature review and a social media listening software were employed to explore the number of the users referring to specific keywords related to 3D printing and PPE. Additionally, the QALY model was recruited to highlight the importance of the PPE usage.

View Article and Find Full Text PDF

Recent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR).

View Article and Find Full Text PDF

The characterization of calcium channel interactome in the last decades opened a new way of perceiving ion channel function and regulation. Partner proteins of ion channels can now be considered as major components of the calcium homeostatic mechanisms, while the reinforcement or disruption of their interaction with the channel units now represents an attractive target in research and therapeutics. In this review we will focus on the targeting of calcium channel partner proteins in order to act on the channel activity, and on its consequences for cell and organism physiology.

View Article and Find Full Text PDF

In prostate carcinogenesis, androgens are known to control the expression of the transient receptor potential melastatin 8 (TRPM8) protein via activation of androgen receptor (AR). Overexpression and/or activity of TRPM8 channel was shown to suppress prostate cancer (PCa) cell migration. Here we report that at certain concentrations androgens facilitate PCa cell migration.

View Article and Find Full Text PDF

: Transient receptor potential (TRP) channels control multiple processes involved in cancer progression by modulating cell proliferation, survival, invasion and intravasation, as well as, endothelial cell (EC) biology and tumor angiogenesis. Nonetheless, a complete TRP expression signature in tumor vessels, including in prostate cancer (PCa), is still lacking. In the present study, we profiled by qPCR the expression of all TRP channels in human prostate tumor-derived ECs (TECs) in comparison with TECs from breast and renal tumors.

View Article and Find Full Text PDF

Neuroendocrine tumors (NET) constitute a heterogeneous group of malignancies with various clinical presentations and growth rates but a common origin in neuroendocrine cells located all over the body. NET are a relatively low-frequency disease mostly represented by gastroenteropancreatic (GEP) and bronchopulmonary tumors (pNET); on the other hand, an increasing frequency and prevalence have been associated with NET. Despite great efforts in recent years, the management of NET is still a critical unmet need due to the lack of knowledge of the biology of the disease, the lack of adequate biomarkers, late presentation, the relative insensitivity of imaging modalities, and a paucity of predictably effective treatment options.

View Article and Find Full Text PDF

In prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration.

View Article and Find Full Text PDF