Modeling the laser-plasma interaction within solids is crucial in controlling ultrafast laser processing of dielectrics, where the pulse propagation and plasma formation dynamics are highly intricate. This is especially important when dealing with nano-scale plasmas where specific phenomena of plasma physics, such as resonance absorption, can significantly impact the energy deposition process. In this article, we report on adapting of a Particle-In-Cell code, EPOCH, to model the laser-plasma interaction within solids.
View Article and Find Full Text PDFControlling the formation of high aspect ratio void channels inside glass is important for applications like the high-speed dicing of glass. Here, we investigate void formation using ultrafast Bessel beams in the single shot illumination regime. We characterize the morphology of the damages as a function of pulse energy, pulse duration, and position of the beam inside fused silica, Corning Eagle XG, and Corning Gorilla glass.
View Article and Find Full Text PDFWe propose an effective scheme to interpret the abruptly autofocusing vortex beam. In our scheme, a set of analytical formulae are deduced to well predict not only the global caustic, before and after the focal plane, but also the focusing properties of the abruptly autofocusing vortex beam, including the axial position as well as the diameter of focal ring. Our analytical results are in excellent agreement with both numerical simulation and experimental results.
View Article and Find Full Text PDFUltrafast imaging is essential in physics and chemistry to investigate the femtosecond dynamics of nonuniform samples or of phenomena with strong spatial variations. It relies on observing the phenomena induced by an ultrashort laser pump pulse using an ultrashort probe pulse at a later time. Recent years have seen the emergence of very successful ultrafast imaging techniques of single non-reproducible events with extremely high frame rate, based on wavelength or spatial frequency encoding.
View Article and Find Full Text PDFA number of physical processes in laser-plasma interaction can be described with the two-fluid plasma model. We report on a solver for the three-dimensional two-fluid plasma model equations. This solver is particularly suited for simulating the interaction between short laser pulses with plasmas.
View Article and Find Full Text PDFBessel beams are becoming a very useful tool in many areas of optics and photonics, because of the invariance of their intensity profile over an extended propagation range. Finite-Difference-Time-Domain (FDTD) approach is widely used for the modeling of the beam interaction with nanostructures. However, the generation of the Bessel beam in this approach is a computationally challenging problem.
View Article and Find Full Text PDFWe investigate ablation of CVD monolayer graphene by femtosecond pulses in the single shot regime. We show that the ablation probability of flat graphene drastically reduces for small illumination diameters even if the ablation threshold is exceeded. However, the presence of graphene wrinkles enhances the ablation probability.
View Article and Find Full Text PDFUltrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation.
View Article and Find Full Text PDFWe develop a novel concept for ultra-high speed cleaving of crystalline materials with femtosecond lasers. Using Bessel beams in single shot, fracture planes can be induced nearly all along the Bessel zone in sapphire. For the first time, we show that only for a pulse duration below 650 fs, a single fracture can be induced in sapphire, while above this duration, cracks appear in all crystallographic orientations.
View Article and Find Full Text PDFFemtosecond pulses provide an extreme degree of confinement of light matter-interactions in high-bandgap materials because of the nonlinear nature of ionization. It was recognized very early on that a highly focused single pulse of only nanojoule energy could generate spherical voids in fused silica and sapphire crystal as the nanometric scale plasma generated has energy sufficient to compress the material around it and to generate new material phases. But the volumes of the nanometric void and of the compressed material are extremely small.
View Article and Find Full Text PDFArbitrary shaping of the on-axis intensity of Bessel beams requires spatial modulation of both amplitude and phase. We develop a non-iterative direct space beam shaping method to generate Bessel beams with high energy throughput from direct space with a single phase-only spatial light modulator. For this purpose, we generalize the approach of Bolduc et al.
View Article and Find Full Text PDFWe investigate the early stage of propagation of Bessel-Gauss vortex beams where a transition regime shows a progressive lateral expansion of the main intensity ring before reaching a diffraction-free regime. The eikonal equation is used to characterize the beam structure. The beam is featured by a family of hyperboloids with variable waists, generating a tapered tubular caustic.
View Article and Find Full Text PDFAn open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 10(13) W/cm(2) has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation.
View Article and Find Full Text PDFA bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo.
View Article and Find Full Text PDFWe report the observation of arbitrary accelerating beams (ABs) designed using a nonparaxial description of optical caustics. We use a spatial light modulator-based setup and techniques of Fourier optics to generate circular and Weber beams subtending over 95 deg of arc. Applying a complementary binary mask also allows the generation of periodic ABs taking the forms of snake-like trajectories, and the application of a rotation to the caustic allows the first experimental synthesis of optical ABs upon the surface of a sphere in three dimensions.
View Article and Find Full Text PDFWe use caustic beam shaping on 100 fs pulses to experimentally generate nonparaxial accelerating beams along a 60° circular arc, moving laterally by 14 µm over a 28 µm propagation length. This is the highest degree of transverse acceleration reported to our knowledge. Using diffraction integral theory and numerical beam propagation simulations, we show that circular acceleration trajectories represent a unique class of nonparaxial diffraction-free beam profile which also preserves the femtosecond temporal structure in the vicinity of the caustic.
View Article and Find Full Text PDFWe generate arbitrary convex accelerating beams by direct application of an appropriate spatial phase profile on an incident Gaussian beam. The spatial phase calculation exploits the geometrical properties of optical caustics and the Legendre transform. Using this technique, accelerating sheet caustic beams with parabolic profiles (i.
View Article and Find Full Text PDFBackground: Despite substantial progress in medical care, the mortality rate remains unacceptably high in dialysis patients. Evidence suggests that bone mineral dismetabolism (CKD-MBD) might contribute to this burden of death. However, to date only a few papers have investigated the clinical relevance of serum mineral derangements and the impact of different therapeutic strategies on mortality in a homogeneous cohort of south European dialysis patients.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2008
Monte Carlo (MC) based simulations of photon transport in living tissues have become the "gold standard" technique in biomedical optics. Three-dimensional (3D) voxel-based images are the natural way to represent human (and animal) tissues. It is generally believed that the combination of 3D images and MC based algorithms allows one to produce the most realistic models of photon propagation.
View Article and Find Full Text PDFThe interest in, and the need for effective measures to be used in screening, diagnosis, and the follow-up of skeletal pathologies is growing markedly. This paper proposes a completely new and non-invasive technique allowing the study of the human tibia bone marrow (BM) haemodynamics with a time resolution of 1 s. The technique, based on near infrared spectroscopy, is sensitive enough to allow the detection of BM blood volume and/or oxygen saturation changes during orthostatic variations imposed by a tilt bed.
View Article and Find Full Text PDFIt is demonstrated in the short head of the human biceps brachii of 16 healthy subjects (12 males and 4 females) that near infrared photon migration is anisotropic. The probability for a photon to travel along the direction of the muscle fibres is higher (approximately 0.4) than that of travelling along a perpendicular axis (approximately 0.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2002
By analogy with the representation of the polarization of light on the Poincaré sphere, we describe the propagation and the reflection/transmission of light in a multilayer on a hyperbolic surface. We show that the propagation of light corresponds to a classical rotation on this surface and that its reflection/transmission corresponds to a hyperbolic rotation.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2000
It may be shown that, even when a Fabry-Pérot interferometer is used with plane waves propagating at normal incidence, the variations of the intensity reflected by it with respect to the phase difference (induced by the distance between the two mirrors) are generally not symmetrical around its extrema. We study this problem and express the necessary and general conditions for obtaining a symmetrical optical response in the reflection mode. We analyze the simple case of a Fabry-Pérot interferometer the first mirror of which is constituted by a thin layer of metal.
View Article and Find Full Text PDF