Publications by authors named "Giuseppina Pichiri"

This review summarizes the results of a series of studies performed by our group with the aim to define the expression levels of thymosin β and thymosin β over time, starting from fetal development to different ages after birth, in different human organs and tissues. The first section describes the proteomics investigations performed on whole saliva from preterm newborns and gingival crevicular fluid, which revealed to us the importance of these acidic peptides and their multiple functions. These findings inspired us to start an in-depth investigation mainly based on immunochemistry to establish the distribution of thymosin β and thymosin β in different organs from adults and fetuses at different ages (after autopsy), and therefore to obtain suggestions on the functions of β-thymosins in health and disease.

View Article and Find Full Text PDF

Background: Breakthrough studies have shown that pluripotent stem cells are present in human breast milk. The expression of pluripotency markers by breast milk cells is heterogeneous, relating to cellular hierarchy, from early-stage multi-lineage stem cells to fully differentiated mammary epithelial cells, as well as weeks of gestation and days of lactation.

Design And Methods: Here, we qualitatively analyze cell marker expression in freshly isolated human breast milk cells, without any manipulation that could influence protein expression.

View Article and Find Full Text PDF

Cell metastasis is the main cause of cancer mortality. Inhibiting early events during cell metastasis and invasion could significantly improve cancer prognosis, but the initial mechanisms of cell transition and migration are barely known. Calcium regulates cell migration, whilst Thymosin β4 is a G-actin and iron binding peptide associated with tumor metastasis and ferroptosis.

View Article and Find Full Text PDF

Background: A complex sequence of morphogenetic events leads to the development of the adult mouse kidney. In the present study, we investigated the morphological events that characterize the early stages of the mesenchymal-to-epithelial transition of cap mesenchymal cells, analyzing in depth the relationship between cap mesenchymal induction and ureteric bud (UB) branching.

Design And Methods: Normal kidneys of newborn non-obese diabetic (NOD) mice were excised and prepared for light and electron microscopic examination.

View Article and Find Full Text PDF

Metal ions have unique electrochemical and spectroscopical properties that cannot be attained by purely organic compounds. Most of the metal ions are toxic to humans, but paradoxically, metallodrugs are used in medicine as therapeutics and theranostics. Metallodrugs are eliminated in urine and faeces, and therefore release toxic metals and ligands into aquatic ecosystems, thereby raising concerns regarding environmental risks.

View Article and Find Full Text PDF

Zinc is the second most abundant trace element in the human body, and it plays a fundamental role in human physiology, being an integral component of hundreds of enzymes and transcription factors. The discovery that zinc atoms may compete with copper for their absorption in the gastrointestinal tract let to introduce zinc in the therapy of Wilson's disease, a congenital disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts are considered one of the best therapeutic approach in patients affected by Wilson's disease.

View Article and Find Full Text PDF

In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane.

View Article and Find Full Text PDF

Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed.

View Article and Find Full Text PDF

Biomarkers of cell stress are important for proper diagnosis, and in studies of how cells respond to drug treatment. Biomarkers that respond early to pharmacological treatment could improve therapy by tailoring the treatment to the needs of the patient. Thymosin beta-4 (Tβ) plays a significant role in many aspects of cellular metabolism because of its actin-sequestering properties.

View Article and Find Full Text PDF

berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with spp.

View Article and Find Full Text PDF

Two clones, Bt1 from Bos taurus and Om1 from Ovis orientalis musimon, were used as probes for hybridization on genomic DNA and on metaphase chromosomes in members of Bovini and Caprini tribes. Bt1 and Om1 are sequences respectively belonging to the 1.715 and 1.

View Article and Find Full Text PDF

Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells.

View Article and Find Full Text PDF

This work reports the synthesis, characterization and study of complex formation equilibria of the new ligand 6,6'-(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) with Fe(III), Al(III), Cu(II) and Zn(II). On the basis of previous encouraging results with tetradentate bis-kojic acid chelators, this ligand was designed to improve the pharmacokinetic properties: increase the solubility, neutral at physiological pH7.4, and enhancement of membrane crossing ability.

View Article and Find Full Text PDF

Thymosin beta-4 (Tβ4) is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h.

View Article and Find Full Text PDF

An emerging hypothesis from the recent literature explain how specific adverse factors related with growth retardation as well as of low birth weight (LBW) might influence renal development during fetal life and then the insurgence of hypertension and renal disease in adulthood. In this article, after introducing a brief overview of human nephrogenesis, the most important factors influencing nephron number at birth will be reviewed, focusing on the "in utero" experiences that lead to an increased risk of developing hypertension and/or kidney disease in adult. Since nephrogenesis in preterm human newborns does not stop at birth, but it continues for 4-6 weeks postnatally, a better knowledge of the mechanisms able to accelerate nephrogenesis in the perinatal period, could represent a powerful tool in the hands of neonatologists.

View Article and Find Full Text PDF

BRAF is an oncogene that is commonly mutated in both melanomas and papillary thyroid carcinomas (PTCs). Usually, mutations in the codons 600 or 601 lead to constitutive activity in the Ras-mitogen-activated protein kinase pathway and, recently, the BRAF deletion was described as a relevant risk factor for loco-regional PTC lymph node metastasis. For these reasons, BRAF mutations may be considered a key genetic factor for the metastatic progression of PTC and also for other tumors such as melanoma and colon cancer and a new BRAF-specific therapeutic strategy was already suggested.

View Article and Find Full Text PDF

Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known.

View Article and Find Full Text PDF

A 73-year-old never-smoker woman with chronic bronchitis, increasing dyspnoea, and airflow limitation with a FEV1 of 49% of predicted value had low serum level of alpha-1-antitrypsin (69 mg/dL, normal range 150-350). Isoelectric focusing showed an Mlike pattern. Direct sequencing showed, in the second exon, a particular DNA alteration localized between codon 41 and codon 51: a region of 30 base pairs (bp) was completely deleted and substituted by a 22-bp sequence.

View Article and Find Full Text PDF