LasB elastase is a broad-spectrum exoprotease and a key virulence factor of , a major pathogen causing lung damage and inflammation in acute and chronic respiratory infections. Here, we describe the chemical optimization of specific LasB inhibitors with druglike properties and investigate their impact in cellular and animal models of infection. Competitive inhibition of LasB was demonstrated through structural and kinetic studies.
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition ( = 10-30 nM).
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable β-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications.
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold.
View Article and Find Full Text PDFIn Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g.
View Article and Find Full Text PDF