J Mech Behav Biomed Mater
December 2024
Background: Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.
Objectives: This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF).
Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses.
View Article and Find Full Text PDFMaterials (Basel)
August 2023
Scientific research has achieved numerous milestones in the field of materials applied to medicine for biomedical prosthetics [...
View Article and Find Full Text PDFDuring the SARS-CoV-2 pandemic (also known as COVID-19), workforce downsizing needs, safety requirements, supply chain breaks and inventory shortages affected manufacturing systems' and supply chain's responsiveness and resilience. Companies wandered in a disrupted scenario because recommended actions/strategies to survive - and thrive - were not available an improvised actions to keep their operations up and running. This paper analyzes the COVID-19 impacts on the workforce and supply resilience in a holistic manner.
View Article and Find Full Text PDF