Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception.
View Article and Find Full Text PDFMaterials are needed to increase the stability and half-life of therapeutic proteins during delivery. These materials should be biocompatible and biodegradable. Here, we demonstrate that enzymes and immunoproteins can be encapsulated inside cyclodextrin based metal-organic frameworks using potassium as the metal node.
View Article and Find Full Text PDFHere we present room-temperature spin-dependent charge transport measurements in single-molecule junctions made of metalloporphyrin-based supramolecular assemblies. They display large conductance switching for magnetoresistance in a single-molecule junction. The magnetoresistance depends acutely on the probed electron pathway through the supramolecular wire: those involving the metal center showed marked magnetoresistance effects as opposed to those exclusively involving the porphyrin ring which present nearly complete absence of spin-dependent charge transport.
View Article and Find Full Text PDFBackground: During the outbreak of coronavirus disease 2019 (COVID-19), allocating intensive care beds to patients needing acute care surgery became a very difficult task. Moreover, since general anesthesia is an aerosol-generating procedure, its use became controversial. This strongly restricted therapeutic strategies.
View Article and Find Full Text PDFThe ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supramolecular strategy to directly assemble proteins on surfaces based on multivalent host-guest interactions. The host-guest interactions are achieved by one-step nanofabrication of a well-oriented β-cyclodextrin host-derived self-assembled monolayer on gold (β-CD-SAM) that forms specific inclusion complexes with hydrophobic amino acids located on the surface of the protein.
View Article and Find Full Text PDFIn contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10 G for Ni-DPP up to 8.
View Article and Find Full Text PDF