Publications by authors named "Giuseppe della Valle"

Silicon-based microdevices are considered promising candidates for consolidating several terahertz technologies into a common and practical platform. The practicality stems from the relatively low loss, device compactness, ease of fabrication, and wide range of available passive and active functionalities. Nevertheless, typical device footprints are limited by diffraction to several hundreds of micrometers, which hinders emerging nanoscale applications at terahertz frequencies.

View Article and Find Full Text PDF

Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of contexts, including telecommunications, biology and chemistry. The ability to control polarization at ultrafast speed would pave the way for the development of unprecedented free-space optical links and of novel techniques for probing dynamical processes in complex systems, as chiral molecules. Such high switching speeds can only be reached with an all-optical paradigm, i.

View Article and Find Full Text PDF

Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants.

View Article and Find Full Text PDF

Optical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics.

View Article and Find Full Text PDF

We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures.

View Article and Find Full Text PDF

We investigate nonlinear THz generation from lithium niobate films and crystals of different thicknesses by optical rectification of near-infrared femtosecond pulses. A comparison between numerical studies and polarization-resolved measurements of the generated THz signal reveals a 2 orders of magnitude enhancement in the nonlinear response compared to optical frequencies. We show that this enhancement is due to optical phonon modes at 4.

View Article and Find Full Text PDF

Thin-film organic photovoltaic (OPV) devices represent an attractive alternative to conventional silicon solar cells due to their lightweight, flexibility, and low cost. However, the relatively low optical absorption of the OPV active layers still represents an open issue in view of efficient devices that cannot be addressed by adopting conventional light coupling strategies derived from thick PV absorbers. The light coupling to thin-film solar cells can be boosted by nanostructuring the device interfaces at the subwavelength scale.

View Article and Find Full Text PDF

Metallic nanostructures exhibit localized surface plasmons (LSPs), which offer unprecedented opportunities for advanced photonic materials and devices. Following resonant photoexcitation, LSPs quickly dephase, giving rise to a distribution of energetic 'hot' electrons in the metal. These out-of-equilibrium carriers undergo ultrafast internal relaxation processes, nowadays pivotal in a variety of applications, from photodetection and sensing to the driving of photochemical reactions and ultrafast all-optical modulation of light.

View Article and Find Full Text PDF

The conventional approach to optimising plasmonic sensors is typically based entirely on ensuring phase matching between the excitation wave and the surface plasmon supported by the metallic structure. However, this leads to suboptimal performance, even in the simplest sensor configuration based on the Otto geometry. We present a simplified coupled mode theory approach for evaluating and optimizing the sensing properties of plasmonic waveguide refractive index sensors.

View Article and Find Full Text PDF

Plasmonic nanoparticles are renowned as efficient heaters due to their capability to resonantly absorb and concentrate electromagnetic radiation, trigger excitation of highly energetic (hot) carriers, and locally convert their excess energy into heat via ultrafast nonradiative relaxation processes. Furthermore, in assembly configurations (i.e.

View Article and Find Full Text PDF

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature.

View Article and Find Full Text PDF

The THz spectrum (spanning from 0.3 to 30 THz) offers the potential of a plethora of applications, ranging from the imaging through non transparent media to wireless-over-fiber communications and THz-photonics. The latter framework would greatly benefit from the development of optical-to-THz wavelength converters.

View Article and Find Full Text PDF

The enhancement of nonlinear optical effects nanoscale engineering is a hot topic of research. Optical nanoantennas increase light-matter interaction and provide, simultaneously, a high throughput of the generated harmonics in the scattered light. However, nanoscale nonlinear optics has dealt so far with static or quasi-static configurations, whereas advanced applications would strongly benefit from high-speed reconfigurable nonlinear nanophotonic devices.

View Article and Find Full Text PDF

The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.

View Article and Find Full Text PDF

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

View Article and Find Full Text PDF

Nanofabrication of flat optic silica gratings conformally layered with two-dimensional (2D) MoS is demonstrated over large area (cm), achieving a strong amplification of the photon absorption in the active 2D layer. The anisotropic subwavelength silica gratings induce a highly ordered periodic modulation of the MoS layer, promoting the excitation of Guided Mode Anomalies (GMA) at the interfaces of the 2D layer. We show the capability to achieve a broadband tuning of these lattice modes from the visible (VIS) to the near-infrared (NIR) by simply tailoring the illumination conditions and/or the period of the lattice.

View Article and Find Full Text PDF

Hot-electron dynamics taking place in nanostructured materials upon irradiation with fs-laser pulses has been the subject of intensive research, leading to the emerging field of ultrafast nanophotonics. However, the most common description of nonlinear interaction with ultrashort laser pulses assumes a homogeneous spatial distribution for the photogenerated carriers. Here we theoretically show that the inhomogeneous evolution of the hot carriers at the nanoscale can disclose unprecedented opportunities for ultrafast diffraction management.

View Article and Find Full Text PDF

Flat optics nanoarrays based on few-layer MoS2 are homogeneously fabricated over large-area (cm2) transparent templates, demonstrating effective tailoring of the photon absorption in two-dimensional (2D) transition-metal dichalcogenide (TMD) layers. The subwavelength subtractive re-shaping of the few-layer MoS2 film into a one-dimensional (1D) nanostripe array results in a pronounced photonic anomaly, tunable in a broadband spectral range by simply changing the illumination conditions (or the lattice periodicity). This scheme promotes efficient coupling of light to the 2D TMD layers via resonant interaction between the MoS2 excitons and the photonic lattice, with subsequent enhancement of absorption exceeding 400% relative to the flat layer.

View Article and Find Full Text PDF
Article Synopsis
  • Bidirectional nanoantennas enable advanced functions at the nanoscale, particularly for color routing in compact optical systems.
  • The new approach uses a simpler bimetallic structure to create effective nanoantennas without complex designs, employing a self-organized technique for large-area fabrication.
  • The developed nanoantennas show impressive performance in broadband color routing and light scattering, making them viable for applications in telecommunications and optical sensing.
View Article and Find Full Text PDF

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale.

View Article and Find Full Text PDF

The quest for materials with metal-like properties as alternatives to noble metals is an intense area of research that is set to lead to dramatic improvements in technologies based on plasmonics. Here, we present intermediate band (IB) semiconductor nanocrystals (NCs) as a class of all-dielectric nanomaterials providing quasi-static optical resonances. We show that IB NCs can display a negative permittivity in a broad range of visible wavelengths, enabling a metal-like optical response despite the absence of free carriers in the NC ground state.

View Article and Find Full Text PDF

In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis.

View Article and Find Full Text PDF

Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes.

View Article and Find Full Text PDF

Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model.

View Article and Find Full Text PDF

Quantum mechanics predicts that certain stationary potentials can sustain bound states with an energy buried in the continuous spectrum of scattered states, the so-called bound states in the continuum (BIC). Originally regarded as mathematical curiosities, BIC have found an increasing interest in recent years, particularly in quantum and classical transport of matter and optical waves in mesoscopic and photonic systems where the underlying potential can be judiciously tailored. Most of our knowledge of BIC is so far restricted to static potentials.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Giuseppe della Valle"

  • - Recent research by Giuseppe della Valle focuses on advancing optical technologies through the development of innovative nanostructures and microdevices, with applications in terahertz communication, polarization control, and photocatalysis.
  • - Key findings include the demonstration of ultrafast light polarization switching, enhanced energy transfer in plasmonic photocatalysis, and the creation of highly effective solar absorbers, leveraging the unique properties of nano- and metamaterials.
  • - The studies emphasize the potential for integrating ultrafast dynamics and nonlocal effects in optical systems, which could lead to breakthroughs in both sensing technologies and energy-efficient devices.