The mechanical competence and suturing ability of collagen-based membranes are paramount in guided bone regeneration (GBR) therapy, to ensure damage-free implantation, fixation and space maintenance. However, contact with the biological medium can induce swelling of collagen molecules, yielding risks of membrane sinking into the bone defect, early loss of barrier function, and irreversibly compromised clinical outcomes. To address these challenges, this study investigates the effect of the crosslinked network architecture on both mechanical and suture-holding properties of a new atelocollagen (AC) membrane.
View Article and Find Full Text PDFImplantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under constant mechanical stimulation, e.g.
View Article and Find Full Text PDFContinuous wound monitoring is one strategy to minimise infection severity and inform prompt variations in therapeutic care following infection diagnosis. However, integration of this functionality in therapeutic wound dressings is still challenging. We hypothesised that a theranostic dressing could be realised by integrating a collagen-based wound contact layer with previously demonstrated wound healing capability, and a halochromic dye, i.
View Article and Find Full Text PDFIn clinical trials, new scaffolds for regeneration after spinal cord injury (SCI) should reflect the importance of a mechanically optimised, hydrated environment. Composite scaffolds of nonwovens, self-assembling peptides (SAPs) and hydrogels offer the ability to mimic native spinal cord tissue, promote aligned tissue regeneration and tailor mechanical properties. This work studies the effects of an aligned electrospun nonwoven of P-8-enriched poly(-caprolactone) (PCL) fibres, integrated with a photo-crosslinked hydrogel of glycidylmethacrylated collagen (collagen-GMA), on neurite extension.
View Article and Find Full Text PDFThe fast degradation of collagen-based membranes in the biological environment remains a critical challenge, resulting in underperforming Guided Bone Regeneration (GBR) therapy leading to compromised clinical results. Photoactive atelocollagen (AC) systems functionalised with ethylenically unsaturated monomers, such as 4-vinylbenzyl chloride (4VBC), have been shown to generate mechanically competent materials for wound healing, inflammation control and drug delivery, whereby control of the molecular architecture of the AC network is key. Building on this platform, the sequential functionalisation with 4VBC and methacrylic anhydride (MA) was hypothesised to generate UV-cured AC hydrogels with reduced swelling ratio, increased proteolytic stability and barrier functionality for GBR therapy.
View Article and Find Full Text PDFAdenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries.
View Article and Find Full Text PDFWet spinning is an established fibre manufacturing route to realise collagen fibres with preserved triple helix architecture and cell acceptability for applications in biomedical membranes. However, resulting fibres still need to be chemically modified post-spinning to ensure material integrity in physiological media, with inherent risks of alteration of fibre morphology and with limited opportunities to induce fibrillogenesis following collagen fixation in the crosslinked state. To overcome this challenge, we hypothesised that a photoactive type I collagen precursor bearing either single or multiple monomers could be employed to accomplish hierarchically assembled fibres with improved processability, macroscopic properties and nanoscale organisation via sequential wet spinning and UV-curing.
View Article and Find Full Text PDFRegulating the activity of matrix metalloproteinases (MMPs) is a potential strategy for osteoarthritis (OA) therapy, although delivering this effect in a spatially and temporally localised fashion remains a challenge. Here, we report an injectable and self-healing hydrogel enabling factor-free MMP regulation and biomechanical competence in situ. The hydrogel is realised within 1 min upon room temperature coordination between hyaluronic acid (HA) and a cell-friendly iron-glutathione complex in aqueous environment.
View Article and Find Full Text PDFPhotodynamically active fibres (PAFs) are a novel class of stimulus-sensitive systems capable of triggering antibiotic-free antibacterial effect on-demand when exposed to light. Despite their relevance in infection control, however, the broad clinical applicability of PAFs has not yet been fully realised due to the limited control in fibrous microstructure, cell tolerance and antibacterial activity in the physiologic environment. We addressed this challenge by creating semicrystalline electrospun fibres with varying content of poly[(l-lactide)-co-(glycolide)] (PLGA), poly(ε-caprolactone) (PCL) and methylene blue (MB), whereby the effect of polymer morphology, fibre composition and photosensitiser (PS) uptake on wet state fibre behaviour and functions was studied.
View Article and Find Full Text PDFCell-free translational strategies are needed to accelerate the repair of mineralised tissues, particularly large bone defects, using minimally invasive approaches. Regenerative bone scaffolds should ideally mimic aspects of the tissue's ECM over multiple length scales and enable surgical handling and fixation during implantation . Leveraging the knowledge gained with bioactive self-assembling peptides (SAPs) and SAP-enriched electrospun fibres, we presented a cell free approach for promoting mineralisation apatite deposition and crystal growth, , of SAP-enriched nonwoven scaffolds.
View Article and Find Full Text PDFThe current management of critical size bone defects (CSBDs) remains challenging and requires multiple surgeries. To reduce the number of surgeries, wrapping a biodegradable fibrous membrane around the defect to contain the graft and carry biological stimulants for repair is highly desirable. Poly(ε-caprolactone) (PCL) can be utilised to realise nonwoven fibrous barrier-like structures through free surface electrospinning (FSE).
View Article and Find Full Text PDFThe straightfoward creation of an unreported glutathione-stabilised iron(iii) complex is disclosed. In contrast to previous reports, glutathione was shown to coordinate and stabilise iron directly under physiological conditions in the absence of additional sulfur containing molecules, such as sodium sulfide. The complex was extensively characterised; the molecular geometry was determined as two inequivalent octahedra, approximately 2/3 of which are slightly distorted towards more tetrahedral in character, with the remaining 1/3 more regularly octahedral.
View Article and Find Full Text PDFPeriosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be "clinically accessible," yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity.
View Article and Find Full Text PDFJ Mater Chem B
December 2019
Polymer-based hydrogels have been widely applied for chronic wound therapeutics, due to their well-acclaimed wound exudate management capability. At the same time, there is still an unmet clinical need for simple wound diagnostic tools to assist clinical decision-making at the point of care and deliver on the vision of patient-personalised wound management. To explore this challenge, we present a one-step synthetic strategy to realise a redox-responsive, hyaluronic acid (HA)-based hydrogel that is sensitive to wound environment-related variations in glutathione (GSH) concentration.
View Article and Find Full Text PDFAntimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localized bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemistries and biomaterial design approaches enabling on-demand activation of antibiotic-free antimicrobial functionality following an infection that are environment-friendly, flexible and commercially viable. This study explores the feasibility of integrating a bioresorbable electrospun polymer scaffold with localized antimicrobial photodynamic therapy (aPDT) capability.
View Article and Find Full Text PDFThis study investigates how mesenchymal stem cell's (MSCs) proliferation and migration abilities are influenced by various platelet products (PP). Donor-matched, clinical-, and control laboratory-standard PPs were generated and assessed based on their platelet and leukocyte concentrations. Bone marrow derived MSCs were exposed to these PP to quantify their effect on in vitro MSC proliferation and migration.
View Article and Find Full Text PDFThe spread of antimicrobial resistance calls for chronic wound management devices that can engage with the wound exudate and signal infection by prompt visual effects. Here, the manufacture of a two-layer fibrous device with independently-controlled exudate management capability and visual infection responsivity was investigated by sequential free surface electrospinning of poly(methyl methacrylate-co-methacrylic acid) (PMMA-co-MAA) and poly(acrylic acid) (PAA). By selecting wound pH as infection indicator, PMMA-co-MAA fibres were encapsulated with halochromic bromothymol blue (BTB) to trigger colour changes at infection-induced alkaline pH.
View Article and Find Full Text PDFThe covalent functionalization of type I atelocollagen with either 4-vinylbenzyl or methacrylamide residues is presented as a simple synthetic strategy to achieve customizable, cell-friendly UV-cured hydrogel networks with widespread clinical applicability. Molecular parameters, i.e.
View Article and Find Full Text PDFElectrospun nanofibrous membranes of natural polymers, such as gelatin, are fundamental in the design of regenerative devices. Crosslinking of electrospun fibres from gelatin is required to prevent dissolution in water, to retain the original nanofibre morphology after immersion in water, and to improve the thermal and mechanical properties, although this is still challenging to accomplish in a controlled fashion. In this study, we have investigated the scalable manufacture and structural stability in aqueous environment of a UV-cured nanofibrous membrane fabricated by free surface electrospinning (FSES) of aqueous solutions containing vinylbenzylated gelatin and poly(ɛ-caprolactone) dimethacrylate (PCL-DMA).
View Article and Find Full Text PDFMedical devices with matrix metalloproteinase (MMP)-modulating functionality are highly desirable to restore tissue homeostasis in critical inflammation states, such as chronic wounds, rotator cuff tears and cancer. The introduction of MMP-modulating functionality in such devices is typically achieved via loading of either rapidly diffusing chelating factors, e.g.
View Article and Find Full Text PDFManuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing.
View Article and Find Full Text PDFThiol-ene photo-click hydrogels were prepared via step-growth polymerisation using thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol) norbornene-terminated (PEG-NB), as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT), whereby up to 80 Abs.% functionalisation and 90 RPN% triple helical preservation were recorded via 2,4,6-Trinitrobenzenesulfonic acid (TNBS) colorimetric assay and circular dichroism (CD).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2017
Currently two factors hinder the use of collagen as building block of regenerative devices: the limited mechanical strength in aqueous environment, and potential antigenicity. Polymeric collagen is naturally found in the cross-linked state and is mechanically tougher than the monomeric, acid-soluble collagen ex vivo. The antigenicity of collagen, on the other hand, is mainly ascribed to inter-species variations in amino acid sequences of the non-helical terminal telopeptides.
View Article and Find Full Text PDFThe design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly-swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4-Vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties.
View Article and Find Full Text PDF