J Allergy Clin Immunol Pract
August 2022
Background: Since 2010, patients and physicians have collaborated to understand unmet needs of patients with mast cell diseases, incorporating mastocytosis and mast cell activation disorders, which include mast cell activation syndromes.
Objective: This Open Innovation in Science project aims to expand understanding of the needs of patients affected by mast cell diseases, and encourage global communication among patient advocacy groups, physicians, researchers, industry, and government. A major aim is to support the scientific community's efforts to improve diagnosis, management, therapy, and patients' quality of life by addressing unmet needs.
The characterization of monoclonal antibodies (mAbs) requires laborious and time-consuming sample preparation steps before the liquid chromatography-mass spectrometry (LC-MS) analysis. Middle-up approaches entailing the use of specific proteases (papain, IdeS, etc.) emerged as practical and informative methods for mAb characterization.
View Article and Find Full Text PDFThis paper deals with the preparation of new composites between polymerized/crosslinked high internal phase emulsions (polyHIPEs) and carbon nanotubes (CNTs), specifically designed for pharmaceutical analytical applications. While the composition of the polyHIPEs was maintained constant, the amount of CNTs was varied from 0.5% to 1% w/v.
View Article and Find Full Text PDFTissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth.
View Article and Find Full Text PDFThis paper shows one of the few examples in the literature on the feasibility of novel materials from natural and biocompatible polymers like inulin (INU) or glycol chitosan (GCS) templated by the formation of / (inverse) high internal phase emulsion (HIPE). To the best of our knowledge, this is the first example of inverse polyHIPEs obtained from glycol chitosan or inulin. The obtained polyHIPEs were specifically designed for possible wound dressing applications.
View Article and Find Full Text PDFHydrogel forming physical networks based on gelatin are an attractive approach toward multifunctional biomaterials with the option of reshaping, self-healing, and stimuli-sensitivity. However, it is challenging to design such gelatin-based hydrogels to be stable at body temperature. Here, gelatin functionalized with desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) side chains is crosslinked with cyclodextrin (CD) dimers under formation of inclusions complexes.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2019
The paper focuses on the preparation of polyacrylate based biomaterials designed as patches for dermal/transdermal drug delivery using materials obtained by the high internal phase emulsion (HIPE) technique. In particular, butyl acrylate and glycidyl methacrylate were selected, respectively, as backbone and functional monomer while two different crosslinkers, bifunctional or trifunctional, were used to form the covalent network. The influence of PEG on the main properties of the materials was also investigated.
View Article and Find Full Text PDFThis review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota.
View Article and Find Full Text PDF(1) Objective: to obtain a reproducible, robust, well-defined, and cost-affordable in vitro model of human cartilage degeneration, suitable for drug screening; (2) Methods: we proposed 3D models of engineered cartilage, considering two human chondrocyte sources (articular/nasal) and five culture methods (pellet, alginate beads, silk/alginate microcarriers, and decellularized cartilage). Engineered cartilages were treated with pro-inflammatory cytokine IL-1β to promote cartilage degradation; (3) Results: articular chondrocytes have been rejected since they exhibit low cellular doubling with respect to nasal cells, with longer culture time for cell expansion; furthermore, pellet and alginate bead cultures lead to insufficient cartilage matrix production. Decellularized cartilage resulted as good support for degeneration model, but long culture time and high cell amount are required to obtain the adequate scaffold colonization.
View Article and Find Full Text PDFThis paper aims at demonstrating silk fibroin nanoparticles (SFNs) promote anti-inflammatory properties of celecoxib (CXB) or curcumin (CUR), and could be exploited for osteoarthritis (OA) treatment. Nanoparticles were prepared by desolvation method and physico-chemically characterized (FT-IR, DSC, TGA, SEM, size distribution and drug release); empty and drug loaded nanoparticles were tested for their ROS-scavenging activity, hemolytic properties, cytotoxicity, and anti-inflammatory potency in an OA in vitro model. Results indicate that a controlled drug release has been achieved by varying the drug loading.
View Article and Find Full Text PDFThis work aims at designing a drug delivery system for rifampicin (RIF) to be used for the therapy of infections from mycobacterium tuberculosis or other lung-colonizing bacteria. We are proposing, in particular, the delivery of RIF by micelles based on inulin functionalized with vitamin E (INVITE). We previously demonstrated that INVITE micelles are formed from the self-assembling sustained by the interaction, within the hydrophobic core, of aromatic groups belonging to vitamin E.
View Article and Find Full Text PDFThe antibacterial activity of the S-unsubstituted- and S-benzyl-substituted-2-mercapto-benzothiazoles 1-4 has been evaluated after complexation with Methyl-β-Cyclodextrin (Me-β-CD) or incorporation in solid dispersions based on Pluronic® F-127 and compared with that of the pure compounds. This with the aim to gain further insights on the possible mechanism(s) involved in the CD-mediated enhancement of antimicrobial effectiveness, a promising methodology to overcome the microbial resistance issue. Together with Differential Scanning Calorimetry, FT-IR spectroscopy and X-ray Powder Diffraction investigations, a molecular modeling study focused on compounds 2 and 4 showed that the S-unsubstituted compound 2/Me-β-CD complex should be more stable than S-benzyl-substituted 4/Me-β-CD.
View Article and Find Full Text PDFDiltiazem hydrochloride, topically applied at 2% concentration, is considered effective for the treatment of chronic anal fissures, although it involves several side effects among which anal pruritus and postural hypotension. To test the hypothesis that a sustained delivery system of diltiazem hydrochloride may be helpful for the treatment of chronic anal fissures, in the present study we evaluated the potential of gels containing diltiazem hydrochloride entrapped in microsponges. Such microsponges were based on Eudragit RS 100 and the effect of some formulation variables was assessed by a 2 full factorial screening design.
View Article and Find Full Text PDFIn this paper, a pilot production process for mesenchymal stem/stromal freeze-dried secretome was performed in a validated good manufacturing practice (GMP)-compliant cell factory. Secretome was purified from culture supernatants by ultrafiltration, added to cryoprotectant, lyophilized and characterized. We obtained a freeze-dried, "ready-off-the-shelf" and free soluble powder containing extracellular vesicles and proteins.
View Article and Find Full Text PDFHydrogels are among the most common materials used in drug delivery, as polymeric micelles are too. They, preferentially, load hydrophilic and hydrophobic drugs, respectively. In this paper, we thought to combine the favorable behaviors of both hydrogels and polymeric micelles with the specific aim of delivering hydrophilic and hydrophobic drugs for dual delivery in combination therapy, in particular for colon drug delivery.
View Article and Find Full Text PDFIntervertebral disk degeneration is an oxidative and inflammatory pathological condition that induces viability and functionality reduction of Nucleus Pulposus cells (NPs). Cellular therapies were previously proposed to repair and substitute the herniated disk but low proliferative index and pathological conditions of NPs dramatically reduced the efficacy of this approach. To overcome these problems we proposed, for the first time, a therapeutic system based on the association of silk sericin microparticles and platelet-derived products.
View Article and Find Full Text PDFSilk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications.
View Article and Find Full Text PDFAiming at a site-specific drug release in the lower intestinal tract, this paper deals with the synthesis and physicochemical/biological characterization of pH-sensitive nanomicelles from an inulin (INU) amphiphilic derivative. To allow an intestinal site specific release of the payload, INU-Vitamin E (INVITE) bioconjugates were functionalized with succinic anhydride to provide the system with pH-sensitive groups preventing a premature release of the payload into the stomach. The obtained INVITESA micelles resulted nanosized, with a low critical aggregation concentration and the release studies showed a marked pH-dependent release.
View Article and Find Full Text PDFThe aim of this study is to assess whether stromal vascular fraction (SVF)-soaked silk fibroin nonwoven mats (silk-SVF) can preserve the functionality of encapsulated pancreatic endocrine cells (alginate-PECs) after transplantation in the subcutaneous tissue of diabetic mice. Silk scaffolds are selected to create an effective 3D microenvironment for SVF delivery in the subcutaneous tissue before diabetes induction: silk-SVF is subcutaneously implanted in the dorsal area of five healthy animals; after 15 d, mice are treated with streptozotocin to induce diabetes and then alginate-PECs are implanted on the silk-SVF. All animals appear in good health, increasing weight during time, and among them, one presents euglycemia until the end of experiments.
View Article and Find Full Text PDFHere, long-circulating behaviors of Inulin-based nanomicelles are demonstrated for the first time in vivo. We show the synthesis and evaluation of biotin (BIO)-decorated polymeric INVITE micelles constituted of substances of natural origin, Inulin (INU) and Vitamin E (VITE), as long-circulating carriers for receptor-mediated targeted drug delivery. The resulting INVITE or INVITE-BIO micelles, nanometrically sized, did not reveal any cytotoxicity after 24h of incubation with Caco-2 cells.
View Article and Find Full Text PDFCurcumin (CUR) and celecoxib (CLX) are two highly hydrophobic drugs which show bioavailability problems due to their poor aqueous solubility. The aim of this study was to encapsulate each of these drugs in micelles based on biodegradable and amphiphilic polymers to investigate their anti-angiogenesis activity. Here we use an amphiphilic polymer, based on two natural substances from renewable resources (Inulin and Vitamin E, INVITE), as a self-assembling system for the drug delivery of CUR and CLX.
View Article and Find Full Text PDFHyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy.
View Article and Find Full Text PDF