Sorption of pure CO and CH and CO/CH binary gas mixtures in amorphous glassy Poly(2,6-dimethyl-1,4-phenylene) oxide (PPO) at 35 °C up to 1000 Torr was investigated. Sorption experiments were carried out using an approach that combines barometry with FTIR spectroscopy in the transmission mode to quantify the sorption of pure and mixed gases in polymers. The pressure range was chosen to prevent any variation of the glassy polymer density.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2023
Polymer matrices, when placed in contact with a fluid phase made of low molecular weight compounds, undergo a depression of their glass transition temperature () determined by the absorption of these compounds and the associated plasticization phenomena. Frequently, this effect is coupled with the mechanical action of the compressive stress exerted by the pressure of the fluid phase that, in contrast, promotes an increase in the . This issue is relevant for technological and structural applications of composites with high-performance glassy polymer matrices, due to their significant impact on mechanical properties.
View Article and Find Full Text PDFThis contribution aims at providing a critical overview of experimental results for the sorption of low molecular weight compounds in the Cu-BTC Metal-Organic Framework (MOF) and of their interpretation using available and new, specifically developed, theoretical approaches. First, a literature review of experimental results for the sorption of gases and vapors is presented, with particular focus on the results obtained from vibrational spectroscopy techniques. Then, an overview of theoretical models available in the literature is presented starting from semiempirical theoretical approaches suitable to interpret the adsorption thermodynamics of gases and vapors in Cu-BTC.
View Article and Find Full Text PDFSuccessful ways of fully exploiting the excellent structural and multifunctional performance of graphene and related materials are of great scientific and technological interest. New opportunities are provided by the fabrication of a novel class of nanocomposites with a nanolaminate architecture. In this work, by using the iterative lift-off/float-on process combined with wet depositions, we incorporated cm-size graphene monolayers produced via Chemical Vapour Deposition into a poly (methyl methacrylate) (PMMA) matrix with a controlled, alternate-layered structure.
View Article and Find Full Text PDFOptimization of post polymerization processes of polyolefin elastomers (POE) involving solvents is of considerable industrial interest. To this aim, experimental determination and theoretical interpretation of the thermodynamics and mass transport properties of POE-solvent mixtures is relevant. Sorption behavior of n-hexane vapor in a commercial propylene-ethylene elastomer (V8880 Vistamaxx from ExxonMobil, Machelen, Belgium) is addressed here, determining experimentally the sorption isotherms at temperatures ranging from 115 to 140 °C and pressure values of n-hexane vapor up to 1 atm.
View Article and Find Full Text PDFThe diffusion process of water molecules within a polyetherimide (PEI) glassy matrix has been analyzed by combining the experimental analysis of water sorption kinetics performed by FTIR spectroscopy with theoretical information gathered from Molecular Dynamics simulations and with the expression of water chemical potential provided by a non-equilibrium lattice fluid model able to describe the thermodynamics of glassy polymers. This approach allowed us to construct a convincing description of the diffusion mechanism of water in PEI providing molecular details of the process related to the effects of the cross- and self-hydrogen bonding established in the system on the dynamics of water mass transport.
View Article and Find Full Text PDFIn this paper, the sorption thermodynamics of low-molecular-weight penetrants in a glassy polyetherimide, endowed with specific interactions, is addressed by combining an experimental approach based on vibrational spectroscopy with thermodynamics modeling. This modeling approach is based on the extension of equilibrium theories to the out-of-equilibrium glassy state. Specific interactions are accounted for in the framework of a compressible lattice fluid theory.
View Article and Find Full Text PDFAtactic polystyrene, as reported in a recent contribution by our group, displays a marked change in glass transition when exposed to toluene vapor due to plasticization associated with vapor sorption within the polymer. The dependence of the glass transition temperature of the polymer-penetrant mixture on the pressure of toluene vapor is characterized by the so-called "retrograde vitrification" phenomenon, in that, at a constant pressure, a rubber to glass transition occurs by increasing the temperature. In this contribution, we have used a theoretical approach, based on the nonrandom lattice fluid thermodynamic model for the polymer-toluene mixture, to predict the state of this system, i.
View Article and Find Full Text PDFExposing a glassy polymer to a fluid phase (in gaseous or liquid state) containing a low molecular weight compound results in the sorption of the latter within the polymer, inducing, among other effects, the plasticization of the material which also promotes a change in the glass transition temperature. The amount of sorbed penetrant is often related in a complex fashion to the temperature and pressure of the fluid, thus determining that the locus of glass transition, when represented in pressure-temperature coordinates, may display as well rather complex patterns. This is an issue of particular importance in several applications of glassy polymers.
View Article and Find Full Text PDFHydrogen bonding (HB) interactions play a major role in determining the behavior of macromolecular systems absorbing water. In fact, functional and structural properties of polymer-water mixtures are affected by the amount and type of these interactions. This contribution aims at a molecular level understanding of the interactional scenario for the technologically relevant case of the poly(ether imide)-water system.
View Article and Find Full Text PDFIn the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL.
View Article and Find Full Text PDFA method is presented for recovering the intensity depth profile, by confocal optical microscopy, in transparent and amorphous samples with low scattering. The response function of a confocal Raman microscope has been determined by using the second Rayleigh-Sommerfeld diffraction integral and scalar wave optics within paraxial approximation, taking into account the refractive index mismatch between the sample and the medium surrounding the objective lens. An iterative multi-fitting-scheme, based on the conjugate gradient method and Brent algorithm, allowed to fit several depth profile curves simultaneously and retrieve the beam waist, the signal amplitude and the position of the sample surface.
View Article and Find Full Text PDFSorption of water in poly(ε-caprolactone) (PCL), with specific focus on the hydrogen-bonding interactions, has been analyzed by combining ab initio calculations, macroscopic thermodynamics modeling, and relevant features emerging from spectroscopic and gravimetric measurements. Fourier transform infrared (FTIR) data, analyzed by difference spectroscopy, two-dimensional correlation spectroscopy, and least-squares curve-fitting analysis associated with gravimetric determination of water sorption isotherm provided information on the system's behavior and on the molecular interactions established between the polymer and the penetrant. A consistent physical picture emerged pointing to the presence of two spectroscopically discernible water species (first-shell and second-shell layers) that have been quantified.
View Article and Find Full Text PDFSorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules.
View Article and Find Full Text PDFSelf-assembling of reduced graphene oxide platelets, as a tailored interconnected network within a natural rubber matrix, is proposed as a mean for obtaining nanocomposites with improved gas barrier, as compared to neat natural rubber. Interestingly, this nanocomposite structure results to be much more effective than homogeneous dispersion of graphene platelike particles, even at low graphene loadings. Such behavior is interpreted on the grounds of a theoretical model describing permeability of heterogeneous systems specifically accounting for self-segregated graphene morphology.
View Article and Find Full Text PDFIn-situ Fourier transform infrared (FTIR) measurements have been carried out at different relative pressures of water vapor to study the H(2)O diffusion in three polyimides differing in their molecular structure and fluorine substitution. Spectral data have been analyzed by difference spectroscopy, least-squares curve fitting, and two-dimensional (2D) correlation spectroscopy, which provided molecular level information on the diffusion mechanism. In particular, two distinct water species were identified corresponding, respectively, to the first and second-shell hydration layers.
View Article and Find Full Text PDF