Publications by authors named "Giuseppe Pasquale Varano"

Autophagy, the cellular process responsible for degradation and recycling of cytoplasmic components through the autophagosomal-lysosomal pathway, is fundamental for neuronal homeostasis and its deregulation has been identified as a hallmark of neurodegeneration. Retinal hypoxic-ischemic events occur in several sight-treating disorders, such as central retinal artery occlusion, diabetic retinopathy, and glaucoma, leading to degeneration and loss of retinal ganglion cells. Here we analyzed the autophagic response in the retinas of mice subjected to ischemia induced by transient elevation of intraocular pressure, reporting a biphasic and reperfusion time-dependent modulation of the process.

View Article and Find Full Text PDF

Purpose: Retinal ischemic phenomena occur in several ocular diseases that share the degeneration and death of retinal ganglion cells (RGCs) as the final event. We tested the neuroprotective effect of azithromycin, a widely used semisynthetic macrolide antibiotic endowed with anti-inflammatory and immunomodulatory properties, in a model of retinal ischemic injury induced by transient elevation of intraocular pressure in the rat.

Methods: Retinal ischemia was induced in adult rats with transient elevation of intraocular pressure.

View Article and Find Full Text PDF

In clinical glaucoma, as well as in experimental models, the loss of retinal ganglion cells occurs by apoptosis. This final event is preceded by inflammatory responses involving the activation of innate and adaptive immunity, with retinal and optic nerve resident glial cells acting as major players. Here we review the current literature on the role of neuroinflammation in neurodegeneration, focusing on the inflammatory molecular mechanisms involved in the pathogenesis and progression of the optic neuropathy.

View Article and Find Full Text PDF

Purpose: Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity.

View Article and Find Full Text PDF

Background: Autophagy is a homeostatic degradative process essential for basal turnover of long-lived proteins and organelles as well as for removal of dysfunctional cellular components. Dysregulation of the autophagic machinery has been recently associated to several conditions including neurodegenerative diseases and cancer, but only very few studies have investigated its role in pain processing.

Results: We previously described autophagy impairment at the spinal cord in the experimental model of neuropathic pain induced by spinal nerve ligation (SNL).

View Article and Find Full Text PDF

Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.

View Article and Find Full Text PDF

Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1.

View Article and Find Full Text PDF

Purpose: Adipose-derived stem cells (ADSC) are multipotent, safe, non-immunogenic and can differentiate into functional keratocytes in situ. The topical use of ADSC derived from human processed lipoaspirate was investigated for treating injured rat cornea.

Methods: A total of 19 rats were used.

View Article and Find Full Text PDF