Introduction: Apomorphine is a dopamine agonist used in Parkinson's disease (PD), which matches levodopa in terms of the magnitude of effect on the cardinal motor features, such as tremor and bradykinesia. The beneficial effect of this treatment on PD patients with tremor-dominant has widely been demonstrated, although the underlying neural correlates are unknown. We sought to examine the effects of apomorphine on topological characteristics of resting-state functional connectivity networks in tremor-dominant PD (tdPD) patients.
View Article and Find Full Text PDFAccording to embodied cognition, processing language with motor content involves a simulation of this content by the brain motor system. Patients with brain lesions involving the motor system are characterized by deficits in action verbs processing in the absence of dementia. We sought to assess whether action verbs interfere with the motor behavior of patients with Parkinson's disease (PD) having tremor dominant symptoms.
View Article and Find Full Text PDF: Technology-supported rehabilitation is emerging as a solution to support therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at improving stroke recovery. End-effector robotic devices are known to positively affect the recovery of arm functions, however there is a lack of evidence regarding exoskeletons. This paper evaluates the impact of cerebral lesion load on the response to a validated robotic-assisted rehabilitation protocol.
View Article and Find Full Text PDFIntroduction: The aim of our study was to investigate the effect of apomorphine and placebo on resting tremor in tremor-dominant Parkinson's disease (tPD) patients.
Methods: Fifteen tPD patients were enrolled. Each patient underwent two treatments on two consecutive days: on day one the patients received a subcutaneous injection of placebo, while on day two they received apomorphine.
Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.
View Article and Find Full Text PDFBackground: The application of artificial intelligence to extract predictors of Gambling disorder (GD) is a new field of study. A plethora of studies have suggested that maladaptive personality dispositions may serve as risk factors for GD.
New Method: Here, we used Classification and Regression Trees algorithm to identify multivariate predictive patterns of personality profiles that could identify GD patients from healthy controls at an individual level.
Neurorehabil Neural Repair
May 2017
Walking is a complex motor behavior with a special relevance in clinical neurology. Many neurological diseases, such as Parkinson's disease and stroke, are characterized by gait disorders whose neurofunctional correlates are poorly investigated. Indeed, the analysis of real walking with the standard neuroimaging techniques poses strong challenges, and only a few studies on motor imagery or walking observation have been performed so far.
View Article and Find Full Text PDFAims: Movement time analyzer (MTA) is an objective instrument to evaluate the degree of motor impairment as well as to investigate the dopaminergic drug effect in Parkinson's disease patients. The aim of this study is to validate a new ecologic neuroimaging tool for quantifying MTA-related hemodynamic response of the cortical motor system by means of functional near-infrared spectroscopy (fNIRS).
Materials: 11 right-handed healthy volunteers (six male and five female, age range 27-64 years) were studied with fNIRS and functional magnetic resonance imaging (fMRI) while performing MTA task for each hand.