Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information.
View Article and Find Full Text PDFThe milling industry envisions solutions to become fully compatible with the industry 4.0 technology where sensors interconnect devices, machines and processes. In this contest, the work presents an integrated solution merging a deeper understanding and control of the process due to real-time data collection by MicroNIR sensors (VIAVI, Santa Rosa, CA)-directly from the manufacturing process-and data analysis by Chemometrics.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2007
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
February 2007
A fast adaptive memetic algorithm (FAMA) is proposed which is used to design the optimal control system for a permanent-magnet synchronous motor. The FAMA is a memetic algorithm with a dynamic parameter setting and two local searchers adaptively launched, either one by one or simultaneously, according to the necessities of the evolution. The FAMA has been tested for both offline and online optimization.
View Article and Find Full Text PDF