We report the synthesis and biological properties of novel analogues of Istaroxime acting as positive inotropic compounds through the inhibition of the Na(+),K(+)-ATPase. We explored the chemical space around the position 6 of the steroidal scaffold by changing the functional groups at that position and maintaining a basic oximic chain in position 3. Some compounds showed inhibitory potencies of the Na(+),K(+)-ATPase higher than Istaroxime and many of the compounds tested in vivo were safer than digoxin, the classic digitalis compound currently used for the treatment of congestive heart failure as inotropic agent.
View Article and Find Full Text PDFWe report the synthesis and biological properties of novel inhibitors of the Na(+),K(+)-ATPase as positive inotropic compounds. Following our previously described model from which Istaroxime was generated, the 5alpha,14alpha-androstane skeleton was used as a scaffold to study the space around the basic chain of our lead compound. Some compounds demonstrated higher potencies than Istaroxime on the receptor and the (E)-3-[(R)-3-pyrrolidinyl]oxime derivative, 15, was the most potent; as further confirmation of our model, the E isomers of the oxime are more potent than the Z form.
View Article and Find Full Text PDFInterventions involving calcium cycling may represent a promising approach to heart failure (HF) therapy because calcium handling is known to be deranged in human and experimental HF. Istaroxime is a sodium-potassium adenosine triphosphatase (ATPase) inhibitor with the unique property of increasing sarcoplasmic reticulum calcium ATPase (SERCA) isoform 2a (SERCA2a) activity. Because this was demonstrated in normal experimental models, we investigated whether istaroxime is able to improve global cardiac function and stimulate SERCA in failing hearts.
View Article and Find Full Text PDF